These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29190363)

  • 1. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq.
    Chen X; Sun YC; Church GM; Lee JH; Zador AM
    Nucleic Acids Res; 2018 Feb; 46(4):e22. PubMed ID: 29190363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.
    Kebschull JM; Garcia da Silva P; Reid AP; Peikon ID; Albeanu DF; Zador AM
    Neuron; 2016 Sep; 91(5):975-987. PubMed ID: 27545715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA sequencing in high-throughput neuroanatomy.
    Kebschull JM
    J Chem Neuroanat; 2019 Oct; 100():101653. PubMed ID: 31173871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections.
    Tang X; Chen J; Zhang X; Liu X; Xie Z; Wei K; Qiu J; Ma W; Lin C; Ke R
    J Genet Genomics; 2023 Sep; 50(9):652-660. PubMed ID: 36796537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing.
    Van Nieuwerburgh F; Soetaert S; Podshivalova K; Ay-Lin Wang E; Schaffer L; Deforce D; Salomon DR; Head SR; Ordoukhanian P
    PLoS One; 2011; 6(10):e26969. PubMed ID: 22046424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing.
    Chen X; Sun YC; Zhan H; Kebschull JM; Fischer S; Matho K; Huang ZJ; Gillis J; Zador AM
    Cell; 2019 Oct; 179(3):772-786.e19. PubMed ID: 31626774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illumina midi-barcodes: quality proof and applications.
    Lanner J; Curto M; Pachinger B; Neumüller U; Meimberg H
    Mitochondrial DNA A DNA Mapp Seq Anal; 2019 Apr; 30(3):490-499. PubMed ID: 30633607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond genome sequencing: lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer.
    Blundell JR; Levy SF
    Genomics; 2014 Dec; 104(6 Pt A):417-30. PubMed ID: 25260907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rabies virus-based barcoded neuroanatomy resolved by single-cell RNA and
    Zhang A; Jin L; Yao S; Matsuyama M; van Velthoven C; Sullivan H; Sun N; Kellis M; Tasic B; Wickersham IR; Chen X
    bioRxiv; 2023 Nov; ():. PubMed ID: 36993334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pBACode: a random-barcode-based high-throughput approach for BAC paired-end sequencing and physical clone mapping.
    Wei X; Xu Z; Wang G; Hou J; Ma X; Liu H; Liu J; Chen B; Luo M; Xie B; Li R; Ruan J; Liu X
    Nucleic Acids Res; 2017 Apr; 45(7):e52. PubMed ID: 27980066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular barcoding: lineage tracing, screening and beyond.
    Kebschull JM; Zador AM
    Nat Methods; 2018 Nov; 15(11):871-879. PubMed ID: 30377352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.
    Moffitt JR; Hao J; Wang G; Chen KH; Babcock HP; Zhuang X
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11046-51. PubMed ID: 27625426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion and deletion correcting DNA barcodes based on watermarks.
    Kracht D; Schober S
    BMC Bioinformatics; 2015 Feb; 16():50. PubMed ID: 25887410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting individual cells by barcode in pooled sequence libraries.
    Ranu N; Villani AC; Hacohen N; Blainey PC
    Nucleic Acids Res; 2019 Jan; 47(1):e4. PubMed ID: 30256981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using high-throughput barcode sequencing to efficiently map connectomes.
    Peikon ID; Kebschull JM; Vagin VV; Ravens DI; Sun YC; Brouzes E; Corrêa IR; Bressan D; Zador AM
    Nucleic Acids Res; 2017 Jul; 45(12):e115. PubMed ID: 28449067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing Rare Dormant and Cycling Lineages Using the Watermelon System.
    Handly-Santana A; Oren Y
    Methods Mol Biol; 2024; 2811():165-175. PubMed ID: 39037657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA library construction for high-throughput sequencing.
    McGinn J; Czech B
    Methods Mol Biol; 2014; 1093():195-208. PubMed ID: 24178567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourth Generation of Next-Generation Sequencing Technologies: Promise and Consequences.
    Ke R; Mignardi M; Hauling T; Nilsson M
    Hum Mutat; 2016 Dec; 37(12):1363-1367. PubMed ID: 27406789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA Fragmentation and Sequencing (RF-Seq): Cost-Effective, Time-Efficient, and High-Throughput 3' mRNA Sequencing Library Construction in a Single Tube.
    Veeranagouda Y; Remaury A; Guillemot JC; Didier M
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e109. PubMed ID: 31763778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Sequencing: A Perspective.
    Turczyk BM; Busby M; Martin AL; Daugharthy ER; Myung D; Terry RC; Inverso SA; Kohman RE; Church GM
    J Biomol Tech; 2020 Jul; 31(2):44-46. PubMed ID: 32382252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.