These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2919052)

  • 1. Image analysis of fundus photographs. The detection and measurement of exudates associated with diabetic retinopathy.
    Ward NP; Tomlinson S; Taylor CJ
    Ophthalmology; 1989 Jan; 96(1):80-6. PubMed ID: 2919052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of early diabetic retinopathy by computer processing of fundus images--a preliminary study.
    Gilchrist J
    Ophthalmic Physiol Opt; 1987; 7(4):393-9. PubMed ID: 3454914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion.
    Prentašić P; Lončarić S
    Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection and quantification of retinal exudates.
    Phillips R; Forrester J; Sharp P
    Graefes Arch Clin Exp Ophthalmol; 1993 Feb; 231(2):90-4. PubMed ID: 8444365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodality analysis of Hyper-reflective Foci and Hard Exudates in Patients with Diabetic Retinopathy.
    Niu S; Yu C; Chen Q; Yuan S; Lin J; Fan W; Liu Q
    Sci Rep; 2017 May; 7(1):1568. PubMed ID: 28484225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted ensemble based automatic detection of exudates in fundus photographs.
    Prentasic P; Loncaric S
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():138-41. PubMed ID: 25569916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Referral system for hard exudates in eye fundus.
    Naqvi SA; Zafar MF; Haq Iu
    Comput Biol Med; 2015 Sep; 64():217-35. PubMed ID: 26231313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of diabetic maculopathy by digital imaging of the fundus.
    Phillips RP; Spencer T; Ross PG; Sharp PF; Forrester JV
    Eye (Lond); 1991; 5 ( Pt 1)():130-7. PubMed ID: 2060662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of low-light nonmydriatic digital imaging with 35-mm ETDRS seven-standard field stereo color fundus photographs and clinical examination.
    Silva PS; Walia S; Cavallerano JD; Sun JK; Dunn C; Bursell SE; Aiello LM; Aiello LP
    Telemed J E Health; 2012 Sep; 18(7):492-9. PubMed ID: 22827402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a multi-field fundus photographing system using a non-mydriatic camera for diabetic retinopathy.
    Shiba T; Maruo K; Akahoshi T
    Diabetes Res Clin Pract; 1999 Aug; 45(1):1-8. PubMed ID: 10499879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joslin Vision Network Validation Study: pilot image stabilization phase.
    Aiello LM; Bursell SE; Cavallerano J; Gardner WK; Strong J
    J Am Optom Assoc; 1998 Nov; 69(11):699-710. PubMed ID: 9844322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of automated screening for treatment-requiring diabetic retinopathy.
    Larsen M; Gondolf T; Godt J; Jensen MS; Hartvig NV; Lund-Andersen H; Larsen N
    Curr Eye Res; 2007 Apr; 32(4):331-6. PubMed ID: 17453954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial absorption of hard exudates in patients with diabetic end-stage renal disease and severe anemia after treatment with erythropoietin.
    Berman DH; Friedman EA
    Retina; 1994; 14(1):1-5. PubMed ID: 8016453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of exudates in fundus images using a Markovian segmentation model.
    Harangi B; Hajdu A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():130-3. PubMed ID: 25569914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.