These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29190622)

  • 1. Classifying Apnea of Prematurity by Transcutaneous Electromyography of the Diaphragm.
    Kraaijenga JV; Hutten GJ; de Waal CG; de Jongh FH; Onland W; van Kaam AH
    Neonatology; 2018; 113(2):140-145. PubMed ID: 29190622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous electromyography of the diaphragm: A cardio-respiratory monitor for preterm infants.
    Kraaijenga JV; Hutten GJ; de Jongh FH; van Kaam AH
    Pediatr Pulmonol; 2015 Sep; 50(9):889-95. PubMed ID: 25327880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breath detection by transcutaneous electromyography of the diaphragm and the Graseby capsule in preterm infants.
    de Waal CG; Kraaijenga JV; Hutten GJ; de Jongh FH; van Kaam AH
    Pediatr Pulmonol; 2017 Dec; 52(12):1578-1582. PubMed ID: 29064171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiorespiratory monitoring in the delivery room using transcutaneous electromyography.
    van Leuteren RW; Kho E; de Waal CG; Te Pas AB; Salverda HH; de Jongh FH; van Kaam AH; Hutten GJ
    Arch Dis Child Fetal Neonatal Ed; 2021 Jul; 106(4):352-356. PubMed ID: 33214154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of Hemidiaphragmatic Paresis in a Preterm Infant with Transcutaneous Electromyography: A Case Report.
    Kraaijenga JV; Hutten GJ; de Jongh FH; van Kaam AH
    Neonatology; 2015; 108(1):38-41. PubMed ID: 25968010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diaphragmatic electromyography in preterm infants: The influence of electrode positioning.
    van Leuteren RW; Bekhuis RE; de Waal CG; de Jongh FH; van Kaam AH; Hutten GJ
    Pediatr Pulmonol; 2020 Feb; 55(2):354-359. PubMed ID: 31765520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Minimally Invasive Surfactant Therapy on Diaphragmatic Activity.
    de Waal CG; Hutten GJ; de Jongh FH; van Kaam AH
    Neonatology; 2018; 114(1):76-81. PubMed ID: 29719289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Caffeine on Diaphragmatic Activity and Tidal Volume in Preterm Infants.
    Kraaijenga JV; Hutten GJ; de Jongh FH; van Kaam AH
    J Pediatr; 2015 Jul; 167(1):70-5. PubMed ID: 25982138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doxapram Treatment and Diaphragmatic Activity in Preterm Infants.
    de Waal CG; Hutten GJ; Kraaijenga JV; de Jongh FH; van Kaam AH
    Neonatology; 2019; 115(1):85-88. PubMed ID: 30352445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diaphragmatic electromyography in infants: an overview of possible clinical applications.
    Scholten AWJ; van Leuteren RW; de Waal CG; Kraaijenga JV; de Jongh FH; van Kaam AH; Hutten GJ
    Pediatr Res; 2024 Jan; 95(1):52-58. PubMed ID: 37660179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurement of diaphragm activity, chest impedance, and ECG using three standard cardiorespiratory monitoring electrodes.
    Scholten AWJ; van Leuteren RW; de Jongh FH; van Kaam AH; Hutten GJ
    Pediatr Pulmonol; 2022 Nov; 57(11):2754-2762. PubMed ID: 35938231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an apnea detector for neonates using diaphragmatic surface electromyography.
    Ochoa JM; Osorio JS; Torres R; McLeod CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7095-8. PubMed ID: 19963943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical activity of the diaphragm during nCPAP and high flow nasal cannula.
    de Waal CG; Hutten GJ; Kraaijenga JV; de Jongh FH; van Kaam AH
    Arch Dis Child Fetal Neonatal Ed; 2017 Sep; 102(5):F434-F438. PubMed ID: 28292963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diaphragmatic activity during weaning from respiratory support in preterm infants.
    Kraaijenga JV; de Waal CG; Hutten GJ; de Jongh FH; van Kaam AH
    Arch Dis Child Fetal Neonatal Ed; 2017 Jul; 102(4):F307-F311. PubMed ID: 27799323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Chest Wall Electromyography to Detect Respiratory Effort during Polysomnography.
    Berry RB; Ryals S; Girdhar A; Wagner MH
    J Clin Sleep Med; 2016 Sep; 12(9):1239-44. PubMed ID: 27306391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcutaneous monitoring of diaphragm activity as a measure of work of breathing in preterm infants.
    van Leuteren RW; de Waal CG; Hutten GJ; de Jongh FH; van Kaam AH
    Pediatr Pulmonol; 2021 Jun; 56(6):1593-1600. PubMed ID: 33524225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of wireless cardiorespiratory monitoring with dry electrodes incorporated in a belt in preterm infants.
    Scholten AWJ; van Leuteren RW; de Waal CG; de Jongh FH; van Kaam AH; Hutten GJ
    Physiol Meas; 2022 May; 43(5):. PubMed ID: 35453135
    [No Abstract]   [Full Text] [Related]  

  • 18. Transcutaneous electromyography as a tool to assess recovery of hemidiaphragmatic paresis: A case report.
    Scholten AWJ; van Leuteren RW; de Jongh FH; van Kaam AH; Markhorst DG; Hutten J
    J Neonatal Perinatal Med; 2023; 16(4):725-729. PubMed ID: 38143382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated respiratory inductive plethysmography to evaluate breathing in infants at risk for postoperative apnea.
    Brown KA; Aoude AA; Galiana HL; Kearney RE
    Can J Anaesth; 2008 Nov; 55(11):739-47. PubMed ID: 19138913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasal high flow in preterm infants: A dose-finding study.
    Hough JL; Shearman AD; Jardine L; Schibler A
    Pediatr Pulmonol; 2020 Mar; 55(3):616-623. PubMed ID: 31868983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.