These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 29190685)

  • 1. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map.
    Smith I; Greenside PG; Natoli T; Lahr DL; Wadden D; Tirosh I; Narayan R; Root DE; Golub TR; Subramanian A; Doench JG
    PLoS Biol; 2017 Nov; 15(11):e2003213. PubMed ID: 29190685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of RNA-guided technologies for target identification and deconvolution.
    Fennell M; Xiang Q; Hwang A; Chen C; Huang CH; Chen CC; Pelossof R; Garippa RJ
    J Biomol Screen; 2014 Dec; 19(10):1327-37. PubMed ID: 25163683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes.
    Evers B; Jastrzebski K; Heijmans JP; Grernrum W; Beijersbergen RL; Bernards R
    Nat Biotechnol; 2016 Jun; 34(6):631-3. PubMed ID: 27111720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?
    Unniyampurath U; Pilankatta R; Krishnan MN
    Int J Mol Sci; 2016 Feb; 17(3):291. PubMed ID: 26927085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.
    Yu J; Silva J; Califano A
    Bioinformatics; 2016 Jan; 32(2):260-7. PubMed ID: 26415723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-generation libraries for robust RNA interference-based genome-wide screens.
    Kampmann M; Horlbeck MA; Chen Y; Tsai JC; Bassik MC; Gilbert LA; Villalta JE; Kwon SC; Chang H; Kim VN; Weissman JS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):E3384-91. PubMed ID: 26080438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies.
    Chin WX; Ang SK; Chu JJ
    Drug Discov Today; 2017 Jan; 22(1):17-30. PubMed ID: 27575999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics.
    Hart T; Brown KR; Sircoulomb F; Rottapel R; Moffat J
    Mol Syst Biol; 2014 Jul; 10(7):733. PubMed ID: 24987113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic screens and functional genomics using CRISPR/Cas9 technology.
    Hartenian E; Doench JG
    FEBS J; 2015 Apr; 282(8):1383-93. PubMed ID: 25728500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.
    Takata N; Sakakura E; Kasukawa T; Sakuma T; Yamamoto T; Sasai Y
    Hum Gene Ther; 2016 Jun; 27(6):436-50. PubMed ID: 26839115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAi/CRISPR Screens: from a Pool to a Valid Hit.
    Schuster A; Erasimus H; Fritah S; Nazarov PV; van Dyck E; Niclou SP; Golebiewska A
    Trends Biotechnol; 2019 Jan; 37(1):38-55. PubMed ID: 30177380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online GESS: prediction of miRNA-like off-target effects in large-scale RNAi screen data by seed region analysis.
    Yilmazel B; Hu Y; Sigoillot F; Smith JA; Shamu CE; Perrimon N; Mohr SE
    BMC Bioinformatics; 2014 Jun; 15():192. PubMed ID: 24934636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAi screening comes of age: improved techniques and complementary approaches.
    Mohr SE; Smith JA; Shamu CE; Neumüller RA; Perrimon N
    Nat Rev Mol Cell Biol; 2014 Sep; 15(9):591-600. PubMed ID: 25145850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy.
    Li Y; Yang C; Liu Z; Du S; Can S; Zhang H; Zhang L; Huang X; Xiao Z; Li X; Fang J; Qin W; Sun C; Wang C; Chen J; Chen H
    Mol Cancer; 2022 Jan; 21(1):2. PubMed ID: 34980132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
    Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ
    J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CancerGD: A Resource for Identifying and Interpreting Genetic Dependencies in Cancer.
    Bridgett S; Campbell J; Lord CJ; Ryan CJ
    Cell Syst; 2017 Jul; 5(1):82-86.e3. PubMed ID: 28711281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATARiS: computational quantification of gene suppression phenotypes from multisample RNAi screens.
    Shao DD; Tsherniak A; Gopal S; Weir BA; Tamayo P; Stransky N; Schumacher SE; Zack TI; Beroukhim R; Garraway LA; Margolin AA; Root DE; Hahn WC; Mesirov JP
    Genome Res; 2013 Apr; 23(4):665-78. PubMed ID: 23269662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing CRISPR and RNAi-based screening technologies.
    Housden BE; Perrimon N
    Nat Biotechnol; 2016 Jun; 34(6):621-3. PubMed ID: 27281421
    [No Abstract]   [Full Text] [Related]  

  • 20. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference.
    Barrangou R; Birmingham A; Wiemann S; Beijersbergen RL; Hornung V; Smith Av
    Nucleic Acids Res; 2015 Apr; 43(7):3407-19. PubMed ID: 25800748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.