These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29190686)

  • 1. Assessment of accuracy, fix success rate, and use of estimated horizontal position error (EHPE) to filter inaccurate data collected by a common commercially available GPS logger.
    Morris G; Conner LM
    PLoS One; 2017; 12(11):e0189020. PubMed ID: 29190686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements.
    Forin-Wiart MA; Hubert P; Sirguey P; Poulle ML
    PLoS One; 2015; 10(6):e0129271. PubMed ID: 26086958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight GPS-tags, one giant leap for wildlife tracking? An assessment approach.
    Recio MR; Mathieu R; Denys P; Sirguey P; Seddon PJ
    PLoS One; 2011; 6(12):e28225. PubMed ID: 22163286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of GPS/GPRS tracking devices improves with increased fix interval and is not affected by animal deployment.
    Acácio M; Atkinson PW; Silva JP; Franco AMA
    PLoS One; 2022; 17(3):e0265541. PubMed ID: 35353826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus.
    Vazquez-Prokopec GM; Stoddard ST; Paz-Soldan V; Morrison AC; Elder JP; Kochel TJ; Scott TW; Kitron U
    Int J Health Geogr; 2009 Nov; 8():68. PubMed ID: 19948034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotelemetry marches on: A cost-effective GPS device for monitoring terrestrial wildlife.
    Fischer M; Parkins K; Maizels K; Sutherland DR; Allan BM; Coulson G; Di Stefano J
    PLoS One; 2018; 13(7):e0199617. PubMed ID: 30063710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of micro-GPS receivers for tracking small-bodied mammals.
    McMahon LA; Rachlow JL; Shipley LA; Forbey JS; Johnson TR; Olsoy PJ
    PLoS One; 2017; 12(3):e0173185. PubMed ID: 28301495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost GPS GSM/GPRS telemetry system: performance in stationary field tests and preliminary data on wild otters (Lutra lutra).
    Quaglietta L; Martins BH; de Jongh A; Mira A; Boitani L
    PLoS One; 2012; 7(1):e29235. PubMed ID: 22242163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment.
    Adams AL; Dickinson KJ; Robertson BC; van Heezik Y
    PLoS One; 2013; 8(7):e68496. PubMed ID: 23874645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How much can we trust GPS wildlife tracking? An assessment in semi-free-ranging Crested Ibis
    Liu D; Chen L; Wang Y; Lu J; Huang S
    PeerJ; 2018; 6():e5320. PubMed ID: 30065886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies.
    Wu J; Jiang C; Liu Z; Houston D; Jaimes G; McConnell R
    Environ Health Insights; 2010 Nov; 4():93-108. PubMed ID: 21151593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using GPS data to evaluate the accuracy of state-space methods for correction of Argos satellite telemetry error.
    Patterson TA; McConnell BJ; Fedak MA; Bravington MV; Hindell MA
    Ecology; 2010 Jan; 91(1):273-85. PubMed ID: 20380216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of GPS units for deployment on semiaquatic animals.
    Schlippe Justicia L; Rosell F; Mayer M
    PLoS One; 2018; 13(12):e0207938. PubMed ID: 30521569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution global positioning system tracks: a case study using the African lion (
    Gunner RM; Wilson RP; Holton MD; Hopkins P; Bell SH; Marks NJ; Bennett NC; Ferreira S; Govender D; Viljoen P; Bruns A; van Schalkwyk OL; Bertelsen MF; Duarte CM; van Rooyen MC; Tambling CJ; Göppert A; Diesel D; Scantlebury DM
    J R Soc Interface; 2022 Jan; 19(186):20210692. PubMed ID: 35042386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping stream habitats with a global positioning system: accuracy, precision, and comparison with traditional methods.
    Dauwalter DC; Fisher WL; Belt KC
    Environ Manage; 2006 Feb; 37(2):271-80. PubMed ID: 16391970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating children's location using a personal GPS logging instrument: limitations and lessons learned.
    Dueker D; Taher M; Wilson J; McConnell R
    J Expo Sci Environ Epidemiol; 2014; 24(3):244-52. PubMed ID: 23549404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating habitat selection when GPS fix success is less than 100%.
    Nielson RM; Manly BF; McDonald LL; Sawyer H; McDonald TL
    Ecology; 2009 Oct; 90(10):2956-62. PubMed ID: 19886504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.
    Williams DM; Dechen Quinn A; Porter WF
    PLoS One; 2012; 7(11):e48439. PubMed ID: 23144884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of individual biological traits on GPS fix-loss errors in wild bird tracking.
    García-Jiménez R; Margalida A; Pérez-García JM
    Sci Rep; 2020 Nov; 10(1):19621. PubMed ID: 33184309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing performance of Bayesian state-space models fit to Argos satellite telemetry locations processed with Kalman filtering.
    Silva MA; Jonsen I; Russell DJ; Prieto R; Thompson D; Baumgartner MF
    PLoS One; 2014; 9(3):e92277. PubMed ID: 24651252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.