These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29190695)
1. High-accuracy detection of early Parkinson's Disease using multiple characteristics of finger movement while typing. Adams WR PLoS One; 2017; 12(11):e0188226. PubMed ID: 29190695 [TBL] [Abstract][Full Text] [Related]
2. Early Parkinson's Disease Detection via Touchscreen Typing Analysis using Convolutional Neural Networks. Iakovakis D; Diniz JA; Trivedi D; Chaudhuri RK; Hadjileontiadis LJ; Hadjidimitriou S; Charisis V; Bostanjopoulou S; Katsarou Z; Klingelhoefer L; Mayer S; Reichmann H; Dias SB Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3535-3538. PubMed ID: 31946641 [TBL] [Abstract][Full Text] [Related]
3. Detecting Motor Impairment in Early Parkinson's Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting. Arroyo-Gallego T; Ledesma-Carbayo MJ; Butterworth I; Matarazzo M; Montero-Escribano P; Puertas-Martín V; Gray ML; Giancardo L; Sánchez-Ferro Á J Med Internet Res; 2018 Mar; 20(3):e89. PubMed ID: 29581092 [TBL] [Abstract][Full Text] [Related]
4. Exploring the Complex Phenotypes of Impaired Finger Dexterity in Mild-to-moderate Stage Parkinson's Disease: A Time-Series Analysis. Panyakaew P; Duangjino K; Kerddonfag A; Ploensin T; Piromsopa K; Kongkamol C; Bhidayasiri R J Parkinsons Dis; 2023; 13(6):975-988. PubMed ID: 37574743 [TBL] [Abstract][Full Text] [Related]
5. High-Accuracy Detection of Early Parkinson's Disease through Multimodal Features and Machine Learning. Prashanth R; Dutta Roy S; Mandal PK; Ghosh S Int J Med Inform; 2016 Jun; 90():13-21. PubMed ID: 27103193 [TBL] [Abstract][Full Text] [Related]
6. Touchscreen typing-pattern analysis for detecting fine motor skills decline in early-stage Parkinson's disease. Iakovakis D; Hadjidimitriou S; Charisis V; Bostantzopoulou S; Katsarou Z; Hadjileontiadis LJ Sci Rep; 2018 May; 8(1):7663. PubMed ID: 29769594 [TBL] [Abstract][Full Text] [Related]
7. A computer vision framework for finger-tapping evaluation in Parkinson's disease. Khan T; Nyholm D; Westin J; Dougherty M Artif Intell Med; 2014 Jan; 60(1):27-40. PubMed ID: 24332155 [TBL] [Abstract][Full Text] [Related]
8. What the trained eye cannot see: Quantitative kinematics and machine learning detect movement deficits in early-stage Parkinson's disease from videos. Guarín DL; Wong JK; McFarland NR; Ramirez-Zamora A; Vaillancourt DE Parkinsonism Relat Disord; 2024 Oct; 127():107104. PubMed ID: 39153421 [TBL] [Abstract][Full Text] [Related]
9. Detection of Parkinson's disease with keystroke data. Demir B; Ulukaya S; Erdem O Comput Methods Biomech Biomed Engin; 2023 Oct; 26(13):1653-1667. PubMed ID: 37599616 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Assessment of Finger Movement Profile in a Visual-Motor Task Based on a Tablet Computer: The Application in Parkinson's Disease. Tang P; Hou C; Liu Y; Liu P; Zhang X; Zhang L; Chong L; Li R J Parkinsons Dis; 2019; 9(4):811-819. PubMed ID: 31450513 [TBL] [Abstract][Full Text] [Related]
11. Computer keyboard interaction as an indicator of early Parkinson's disease. Giancardo L; Sánchez-Ferro A; Arroyo-Gallego T; Butterworth I; Mendoza CS; Montero P; Matarazzo M; Obeso JA; Gray ML; Estépar RS Sci Rep; 2016 Oct; 6():34468. PubMed ID: 27703257 [TBL] [Abstract][Full Text] [Related]
12. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. Salvatore C; Cerasa A; Castiglioni I; Gallivanone F; Augimeri A; Lopez M; Arabia G; Morelli M; Gilardi MC; Quattrone A J Neurosci Methods; 2014 Jan; 222():230-7. PubMed ID: 24286700 [TBL] [Abstract][Full Text] [Related]
13. Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease. Drotár P; Mekyska J; Rektorová I; Masarová L; Smékal Z; Faundez-Zanuy M Comput Methods Programs Biomed; 2014 Dec; 117(3):405-11. PubMed ID: 25261003 [TBL] [Abstract][Full Text] [Related]
14. Parkinson's disease classification using gait analysis via deterministic learning. Zeng W; Liu F; Wang Q; Wang Y; Ma L; Zhang Y Neurosci Lett; 2016 Oct; 633():268-278. PubMed ID: 27693437 [TBL] [Abstract][Full Text] [Related]
16. Unobtrusive detection of Parkinson's disease from multi-modal and in-the-wild sensor data using deep learning techniques. Papadopoulos A; Iakovakis D; Klingelhoefer L; Bostantjopoulou S; Chaudhuri KR; Kyritsis K; Hadjidimitriou S; Charisis V; Hadjileontiadis LJ; Delopoulos A Sci Rep; 2020 Dec; 10(1):21370. PubMed ID: 33288807 [TBL] [Abstract][Full Text] [Related]
17. Accelerometer-based quantitative analysis of axial nocturnal movements differentiates patients with Parkinson's disease, but not high-risk individuals, from controls. Louter M; Maetzler W; Prinzen J; van Lummel RC; Hobert M; Arends JB; Bloem BR; Streffer J; Berg D; Overeem S; Liepelt-Scarfone I J Neurol Neurosurg Psychiatry; 2015 Jan; 86(1):32-7. PubMed ID: 24777169 [TBL] [Abstract][Full Text] [Related]
18. Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson's Disease. Memedi M; Sadikov A; Groznik V; Žabkar J; Možina M; Bergquist F; Johansson A; Haubenberger D; Nyholm D Sensors (Basel); 2015 Sep; 15(9):23727-44. PubMed ID: 26393595 [TBL] [Abstract][Full Text] [Related]
19. Investigating voice as a biomarker: Deep phenotyping methods for early detection of Parkinson's disease. Tracy JM; Özkanca Y; Atkins DC; Hosseini Ghomi R J Biomed Inform; 2020 Apr; 104():103362. PubMed ID: 31866434 [TBL] [Abstract][Full Text] [Related]
20. A Three-Dimensional Finger-Tapping Framework for Recognition of Patients With Mild Parkinson's Disease. Li J; Zhu H; Wang H; Wang B; Cen Z; Yang D; Liu P; Luo W; Pan Y IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3331-3340. PubMed ID: 37494164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]