These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29190801)

  • 1. Comparison between manual and mechanical chest compressions during resuscitation in a pediatric animal model of asphyxial cardiac arrest.
    López J; Fernández SN; González R; Solana MJ; Urbano J; Toledo B; López-Herce J
    PLoS One; 2017; 12(11):e0188846. PubMed ID: 29190801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between synchronized and non-synchronized ventilation and between guided and non-guided chest compressions during resuscitation in a pediatric animal model after asphyxial cardiac arrest.
    Manrique G; García M; Fernández SN; González R; Solana MJ; López J; Urbano J; López-Herce J
    PLoS One; 2019; 14(7):e0219660. PubMed ID: 31318890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model.
    Botran M; Lopez-Herce J; Urbano J; Solana MJ; Garcia A; Carrillo A
    Intensive Care Med; 2011 Nov; 37(11):1873-80. PubMed ID: 21847647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.
    Hamrick JT; Hamrick JL; Bhalala U; Armstrong JS; Lee JH; Kulikowicz E; Lee JK; Kudchadkar SR; Koehler RC; Hunt EA; Shaffner DH
    Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chest compressions versus ventilation plus chest compressions in a pediatric asphyxial cardiac arrest animal model.
    Iglesias JM; López-Herce J; Urbano J; Solana MJ; Mencía S; Del Castillo J
    Intensive Care Med; 2010 Apr; 36(4):712-6. PubMed ID: 20148320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Bystander" chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless "cardiac arrest".
    Berg RA; Hilwig RW; Kern KB; Ewy GA
    Circulation; 2000 Apr; 101(14):1743-8. PubMed ID: 10758059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons.
    Adams JA; Bassuk JA; Arias J; Wu H; Jorapur V; Lamas GA; Kurlansky P
    Resuscitation; 2008 Apr; 77(1):132-8. PubMed ID: 18164796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of manual and mechanical chest compressions during resuscitation efforts throughout cardiac arrest.
    Ewy GA; Zuercher M
    Future Cardiol; 2013 Nov; 9(6):863-73. PubMed ID: 24180542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injury characteristics and hemodynamics associated with guideline-compliant CPR in a pediatric porcine cardiac arrest model.
    Salcido DD; Koller AC; Genbrugge C; Fink EL; Berg RA; Menegazzi JJ
    Am J Emerg Med; 2022 Jan; 51():176-183. PubMed ID: 34763236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest.
    Ward KR; Menegazzi JJ; Zelenak RR; Sullivan RJ; McSwain NE
    Ann Emerg Med; 1993 Apr; 22(4):669-74. PubMed ID: 8457093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model.
    Vali P; Chandrasekharan P; Rawat M; Gugino S; Koenigsknecht C; Helman J; Mathew B; Berkelhamer S; Nair J; Lakshminrusimha S
    Pediatr Crit Care Med; 2017 Aug; 18(8):e370-e377. PubMed ID: 28661972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support.
    Hamrick JL; Hamrick JT; Lee JK; Lee BH; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2014 Apr; 3(2):e000450. PubMed ID: 24732917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. End-tidal carbon dioxide changes during cardiopulmonary resuscitation after experimental asphyxial cardiac arrest.
    Bhende MS; Karasic DG; Karasic RB
    Am J Emerg Med; 1996 Jul; 14(4):349-50. PubMed ID: 8768152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.