These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29191000)

  • 1. In-vivo imaging of tumor-infiltrating immune cells: implications for cancer immunotherapy.
    Zeelen C; Paus C; Draper D; Heskamp S; Signore A; Galli F; Griessinger CM; Aarntzen EH
    Q J Nucl Med Mol Imaging; 2018 Mar; 62(1):56-77. PubMed ID: 29191000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.
    Li B; Severson E; Pignon JC; Zhao H; Li T; Novak J; Jiang P; Shen H; Aster JC; Rodig S; Signoretti S; Liu JS; Liu XS
    Genome Biol; 2016 Aug; 17(1):174. PubMed ID: 27549193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the immune response to monitor tumor immunotherapy.
    Wang Q; Ornstein M; Kaufman HL
    Expert Rev Vaccines; 2009 Oct; 8(10):1427-37. PubMed ID: 19803763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy.
    Kalathil SG; Thanavala Y
    Cancer Immunol Immunother; 2016 Jul; 65(7):813-9. PubMed ID: 26910314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PET imaging of the immune system: immune monitoring at the whole body level.
    Singh AS; Radu CG; Ribas A
    Q J Nucl Med Mol Imaging; 2010 Jun; 54(3):281-90. PubMed ID: 20639814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo imaging of therapy-induced anti-cancer immune responses in humans.
    Aarntzen EH; Srinivas M; Radu CG; Punt CJ; Boerman OC; Figdor CG; Oyen WJ; de Vries IJ
    Cell Mol Life Sci; 2013 Jul; 70(13):2237-57. PubMed ID: 23052208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy.
    Galli F; Aguilera JV; Palermo B; Markovic SN; Nisticò P; Signore A
    J Exp Clin Cancer Res; 2020 May; 39(1):89. PubMed ID: 32423420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocrine organs under the control of the immune system: potential implications for cellular therapies.
    Jacobs B; Papewalis C; Ehlers M; Schott M
    Horm Metab Res; 2010 Dec; 42(13):912-7. PubMed ID: 21132622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosuppressive cells in tumor immune escape and metastasis.
    Liu Y; Cao X
    J Mol Med (Berl); 2016 May; 94(5):509-22. PubMed ID: 26689709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.
    Figueroa JA; Reidy A; Mirandola L; Trotter K; Suvorava N; Figueroa A; Konala V; Aulakh A; Littlefield L; Grizzi F; Rahman RL; Jenkins MR; Musgrove B; Radhi S; D'Cunha N; D'Cunha LN; Hermonat PL; Cobos E; Chiriva-Internati M
    Int Rev Immunol; 2015 Mar; 34(2):154-87. PubMed ID: 25901860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preclinical imaging for targeting cancer immune evasion.
    Terlizzi C; De Rosa V; Iommelli F; Altobelli GG; Fonti R; Del Vecchio S
    Q J Nucl Med Mol Imaging; 2020 Jun; 64(2):186-193. PubMed ID: 32286769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of regulatory T cells in cancer immunity.
    Takeuchi Y; Nishikawa H
    Int Immunol; 2016 Aug; 28(8):401-9. PubMed ID: 27160722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune Landscape in Tumor Microenvironment: Implications for Biomarker Development and Immunotherapy.
    Pérez-Romero K; Rodríguez RM; Amedei A; Barceló-Coblijn G; Lopez DH
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32752264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy.
    Zanganeh S; Spitler R; Hutter G; Ho JQ; Pauliah M; Mahmoudi M
    Immunotherapy; 2017 Sep; 9(10):819-835. PubMed ID: 28877626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-cell immunometabolism against cancer.
    Jiang S; Yan W
    Cancer Lett; 2016 Nov; 382(2):255-258. PubMed ID: 27664755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotherapy and gene therapy as novel treatments for cancer.
    Rangel-Sosa MM; Aguilar-Córdova E; Rojas-Martínez A
    Colomb Med (Cali); 2017 Sep; 48(3):138-147. PubMed ID: 29213157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology.
    Aragon-Sanabria V; Kim GB; Dong C
    Adv Exp Med Biol; 2018; 1092():113-138. PubMed ID: 30368751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cytotoxic T lymphocytes: role in immunosurveillance and in immunotherapy].
    Benchetrit F; Gazagne A; Adotevi O; Haicheur N; Godard B; Badoual C; Fridman WH; Tartour E
    Bull Cancer; 2003; 90(8-9):677-85. PubMed ID: 14609756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NK cell receptors as tools in cancer immunotherapy.
    Sentman CL; Barber MA; Barber A; Zhang T
    Adv Cancer Res; 2006; 95():249-92. PubMed ID: 16860660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.