These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29191020)

  • 1. Highly Tunable Electronic Structures of Phosphorene/Carbon Nanotube Heterostructures through External Electric Field and Atomic Intercalation.
    Tian XQ; Wang XR; Wei YD; Liu L; Gong ZR; Gu J; Du Y; Yakobson BI
    Nano Lett; 2017 Dec; 17(12):7995-8004. PubMed ID: 29191020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monolayer Phosphorene-Carbon Nanotube Heterostructures for Photocatalysis: Analysis by Density Functional Theory.
    Zhang Z; Cheng MQ; Chen Q; Wu HY; Hu W; Peng P; Huang GF; Huang WQ
    Nanoscale Res Lett; 2019 Jul; 14(1):233. PubMed ID: 31300919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study.
    Du L; Zheng K; Cui H; Wang Y; Tao L; Chen X
    Phys Chem Chem Phys; 2018 Nov; 20(45):28777-28785. PubMed ID: 30418447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variable electronic properties of lateral phosphorene-graphene heterostructures.
    Tian X; Liu L; Du Y; Gu J; Xu JB; Yakobson BI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31685-92. PubMed ID: 26554700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Electronic Properties of Blue Phosphorene/Graphene-Like GaN van der Waals Heterostructures by Vertical External Electric Field.
    Guo J; Zhou Z; Li H; Wang H; Liu C
    Nanoscale Res Lett; 2019 May; 14(1):174. PubMed ID: 31139946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures.
    Huang YC; Chen X; Wang C; Peng L; Qian Q; Wang SF
    Nanoscale; 2017 Jun; 9(25):8616-8622. PubMed ID: 28489111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and strain tunable band alignment of black-blue phosphorene lateral heterostructures.
    Li Y; Ma F
    Phys Chem Chem Phys; 2017 May; 19(19):12466-12472. PubMed ID: 28470311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure.
    Huang L; Huo N; Li Y; Chen H; Yang J; Wei Z; Li J; Li SS
    J Phys Chem Lett; 2015 Jul; 6(13):2483-8. PubMed ID: 26266723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures.
    Wang C; Peng L; Qian Q; Du J; Wang S; Huang Y
    Small; 2018 Mar; 14(10):. PubMed ID: 29323456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. van der Waals heterostructures based on allotropes of phosphorene and MoSe
    Kaur S; Kumar A; Srivastava S; Tankeshwar K
    Phys Chem Chem Phys; 2017 Aug; 19(33):22023-22032. PubMed ID: 28792050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain.
    Wang Z; Zhang Y; Wei X; Guo T; Fan J; Ni L; Weng Y; Zha Z; Liu J; Tian Y; Li T; Duan L
    Phys Chem Chem Phys; 2020 May; 22(17):9647-9655. PubMed ID: 32328602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain, electric-field and functionalization induced widely tunable electronic properties in MoS
    Bafekry A; Stampfl C; Ghergherehchi M
    Nanotechnology; 2020 May; 31(29):295202. PubMed ID: 32272455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Termination dependence and electric field modification of band alignment in a CNT/CH
    Tan Q; Wang Q; Zhang C; Gao K; Wang Y; Qing C; Liu Y; Yu D
    Phys Chem Chem Phys; 2021 Apr; 23(15):9249-9258. PubMed ID: 33885070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable band offsets in the BP/P
    Dou W; Huang A; Shi H; Zhang X; Zheng X; Wang M; Xiao Z; Liu L; Chu PK
    Phys Chem Chem Phys; 2018 Dec; 20(47):29931-29938. PubMed ID: 30475360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous covalent and noncovalent carbon nanotube/Ag
    Zhang Z; Huang WQ; Xie Z; Hu W; Peng P; Huang GF
    Phys Chem Chem Phys; 2017 Mar; 19(11):7955-7963. PubMed ID: 28262896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Dimensional (001) LaAlO
    Xue Y; Geng C; Guo Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):3134-3139. PubMed ID: 31851484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of 2D Cr
    He L; Nong H; Tan J; Wu Q; Zheng R; Zhao S; Yu Q; Wang J; Liu B
    Adv Mater; 2024 Feb; 36(7):e2304946. PubMed ID: 37482950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co3O4-carbon nanotube heterostructures with bead-on-string architecture for enhanced lithium storage performance.
    Xu M; Wang F; Zhang Y; Yang S; Zhao M; Song X
    Nanoscale; 2013 Sep; 5(17):8067-72. PubMed ID: 23877304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.