These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 29191128)
1. Suppressive effect of nobiletin and epicatechin gallate on fructose uptake in human intestinal epithelial Caco-2 cells. Satsu H; Awara S; Unno T; Shimizu M Biosci Biotechnol Biochem; 2018 Apr; 82(4):636-646. PubMed ID: 29191128 [TBL] [Abstract][Full Text] [Related]
2. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells. Lee Y; Lim Y; Kwon O Molecules; 2015 Sep; 20(9):17393-404. PubMed ID: 26393568 [TBL] [Abstract][Full Text] [Related]
3. TNFα regulates sugar transporters in the human intestinal epithelial cell line Caco-2. Barrenetxe J; Sánchez O; Barber A; Gascón S; Rodríguez-Yoldi MJ; Lostao MP Cytokine; 2013 Oct; 64(1):181-7. PubMed ID: 23910014 [TBL] [Abstract][Full Text] [Related]
4. Establishing a yeast-based screening system for discovery of human GLUT5 inhibitors and activators. Tripp J; Essl C; Iancu CV; Boles E; Choe JY; Oreb M Sci Rep; 2017 Jul; 7(1):6197. PubMed ID: 28740135 [TBL] [Abstract][Full Text] [Related]
5. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Gauer JS; Tumova S; Lippiat JD; Kerimi A; Williamson G Biochem Pharmacol; 2018 Jun; 152():11-20. PubMed ID: 29548810 [TBL] [Abstract][Full Text] [Related]
6. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers. Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581 [TBL] [Abstract][Full Text] [Related]
7. Regulation of intestinal glucose transport by tea catechins. Shimizu M; Kobayashi Y; Suzuki M; Satsu H; Miyamoto Y Biofactors; 2000; 13(1-4):61-5. PubMed ID: 11237201 [TBL] [Abstract][Full Text] [Related]
8. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model. Chan KY; Zhang L; Zuo Z J Pharm Pharmacol; 2007 Mar; 59(3):395-400. PubMed ID: 17331343 [TBL] [Abstract][Full Text] [Related]
9. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2. Vaidyanathan JB; Walle T J Pharmacol Exp Ther; 2003 Nov; 307(2):745-52. PubMed ID: 12970388 [TBL] [Abstract][Full Text] [Related]
10. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Kobayashi Y; Suzuki M; Satsu H; Arai S; Hara Y; Suzuki K; Miyamoto Y; Shimizu M J Agric Food Chem; 2000 Nov; 48(11):5618-23. PubMed ID: 11087528 [TBL] [Abstract][Full Text] [Related]
11. Influence of gallate and pyrogallol moieties on the intestinal absorption of (-)-epicatechin and (-)-epicatechin gallate. Tagashira T; Choshi T; Hibino S; Kamishikiryou J; Sugihara N J Food Sci; 2012 Oct; 77(10):H208-15. PubMed ID: 22938538 [TBL] [Abstract][Full Text] [Related]
12. Presence or absence of a gallate moiety on catechins affects their cellular transport. Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123 [TBL] [Abstract][Full Text] [Related]
13. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers. Konishi Y; Kobayashi S; Shimizu M J Agric Food Chem; 2003 Dec; 51(25):7296-302. PubMed ID: 14640574 [TBL] [Abstract][Full Text] [Related]
14. Comparison of effects of green tea catechins on apicomplexan hexose transporters and mammalian orthologues. Slavic K; Derbyshire ET; Naftalin RJ; Krishna S; Staines HM Mol Biochem Parasitol; 2009 Nov; 168(1):113-6. PubMed ID: 19577593 [TBL] [Abstract][Full Text] [Related]
15. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator. Chen L; Yu B; Zhang Y; Gao X; Zhu L; Ma T; Yang H PLoS One; 2015; 10(3):e0119122. PubMed ID: 25747701 [TBL] [Abstract][Full Text] [Related]
16. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Mesonero J; Matosin M; Cambier D; Rodriguez-Yoldi MJ; Brot-Laroche E Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):757-62. PubMed ID: 8554516 [TBL] [Abstract][Full Text] [Related]
17. Uniformly-sized, molecularly imprinted polymers for (-)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method. Haginaka J; Tabo H; Ichitani M; Takihara T; Sugimoto A; Sambe H J Chromatogr A; 2007 Jul; 1156(1-2):45-50. PubMed ID: 17070533 [TBL] [Abstract][Full Text] [Related]
18. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Suzuki T; Douard V; Mochizuki K; Goda T; Ferraris RP Biochem J; 2011 Apr; 435(1):43-53. PubMed ID: 21222652 [TBL] [Abstract][Full Text] [Related]
19. The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Bigelow RL; Cardelli JA Oncogene; 2006 Mar; 25(13):1922-30. PubMed ID: 16449979 [TBL] [Abstract][Full Text] [Related]
20. Oenothein B in Eucalyptus Leaf Extract Suppresses Fructose Absorption in Caco-2 Cells. Sugimoto K; Amako M; Takeuchi H; Nakagawa K; Yoshimura M; Amakura Y; Fujita T; Takenaka S; Inui H Molecules; 2021 Dec; 27(1):. PubMed ID: 35011353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]