These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2919171)

  • 1. Dynamic Monte Carlo study of the folding of a six-stranded Greek key globular protein.
    Skolnick J; Kolinski A; Yaris R
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1229-33. PubMed ID: 2919171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo studies on equilibrium globular protein folding. II. Beta-barrel globular protein models.
    Skolnick J; Kolinski A; Yaris R
    Biopolymers; 1989 Jun; 28(6):1059-95. PubMed ID: 2730942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. I. Six-member, Greek key beta-barrel proteins.
    Skolnick J; Kolinski A
    J Mol Biol; 1990 Apr; 212(4):787-817. PubMed ID: 2329583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of equilibrium globular protein folding: alpha-helical bundles with long loops.
    Sikorski A; Skolnick J
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2668-72. PubMed ID: 2704742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of the folding of beta-barrel globular proteins.
    Skolnick J; Kolinski A; Yaris R
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5057-61. PubMed ID: 3393530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Monte Carlo simulations of globular protein folding/unfolding pathways. II. Alpha-helical motifs.
    Sikorski A; Skolnick J
    J Mol Biol; 1990 Apr; 212(4):819-36. PubMed ID: 2329584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics.
    Skolnick J; Kolinski A
    J Mol Biol; 1991 Sep; 221(2):499-531. PubMed ID: 1920430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulations on an equilibrium globular protein folding model.
    Kolinski A; Skolnick J; Yaris R
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7267-71. PubMed ID: 3463964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo studies on equilibrium globular protein folding. III. The four helix bundle.
    Sikorski A; Skolnick J
    Biopolymers; 1989 Jun; 28(6):1097-113. PubMed ID: 2730943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical mechanics of protein folding, unfolding and fluctuation.
    Gło N
    Adv Biophys; 1976; ():65-113. PubMed ID: 1015397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple lattice model that exhibits a protein-like cooperative all-or-none folding transition.
    Kolinski A; Gront D; Pokarowski P; Skolnick J
    Biopolymers; 2003 Jul; 69(3):399-405. PubMed ID: 12833266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Globular-disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?
    Baruah A; Biswas P
    Phys Chem Chem Phys; 2016 Aug; 18(33):23207-14. PubMed ID: 27498593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding.
    Wong KB; Clarke J; Bond CJ; Neira JL; Freund SM; Fersht AR; Daggett V
    J Mol Biol; 2000 Mar; 296(5):1257-82. PubMed ID: 10698632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimal physically realistic protein-like lattice model: designing an energy landscape that ensures all-or-none folding to a unique native state.
    Pokarowski P; Kolinski A; Skolnick J
    Biophys J; 2003 Mar; 84(3):1518-26. PubMed ID: 12609858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding of globular proteins: monte carlo dynamics of a realistic reduced model.
    Kolinski A; Klein P; Romiszowski P; Skolnick J
    Biophys J; 2003 Nov; 85(5):3271-8. PubMed ID: 14581227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the hemocyanin beta-barrel with other Greek key beta-barrels: possible importance of the "beta-zipper" in protein structure and folding.
    Hazes B; Hol WG
    Proteins; 1992 Mar; 12(3):278-98. PubMed ID: 1557352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal positions in globular proteins.
    Papandreou N; Berezovsky IN; Lopes A; Eliopoulos E; Chomilier J
    Eur J Biochem; 2004 Dec; 271(23-24):4762-8. PubMed ID: 15606763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved structural features on protein surfaces: small exterior hydrophobic clusters.
    Tisi LC; Evans PA
    J Mol Biol; 1995 Jun; 249(2):251-8. PubMed ID: 7783191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo studies on equilibrium globular protein folding. I. Homopolymeric lattice models of beta-barrel proteins.
    Kolinski A; Skolnick J; Yaris R
    Biopolymers; 1987 Jun; 26(6):937-62. PubMed ID: 3607251
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.