These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2919185)

  • 1. Dopamine turnover and glutathione oxidation: implications for Parkinson disease.
    Spina MB; Cohen G
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1398-400. PubMed ID: 2919185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoamine oxidase and oxidative stress at dopaminergic synapses.
    Cohen G
    J Neural Transm Suppl; 1990; 32():229-38. PubMed ID: 2128499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation.
    Loeffler DA; DeMaggio AJ; Juneau PL; Havaich MK; LeWitt PA
    Clin Neuropharmacol; 1994 Aug; 17(4):370-9. PubMed ID: 9316685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover.
    Cohen G; Spina MB
    Ann Neurol; 1989 Nov; 26(5):689-90. PubMed ID: 2510589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortico-striatal oxidative status, dopamine turnover and relation with stereotypy in the deer mouse.
    Güldenpfennig M; Wolmarans de W; du Preez JL; Stein DJ; Harvey BH
    Physiol Behav; 2011 Jun; 103(3-4):404-11. PubMed ID: 21397620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of striatal [corrected] synaptosomes to L-dopa increases levels of oxidized glutathione.
    Spina MB; Cohen G
    J Pharmacol Exp Ther; 1988 Nov; 247(2):502-7. PubMed ID: 3183949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow.
    Cohen G; Farooqui R; Kesler N
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4890-4. PubMed ID: 9144160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of monoamine oxidase A or B reduces striatal oxidative stress in rats with partial depletion of the nigro-striatal dopaminergic pathway.
    Aluf Y; Vaya J; Khatib S; Loboda Y; Finberg JP
    Neuropharmacology; 2013 Feb; 65():48-57. PubMed ID: 22982254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nicotine on catecholaminergic storage vesicles.
    Kramer HK; Sershen H; Lajtha A; Reith ME
    Brain Res; 1989 Dec; 503(2):296-8. PubMed ID: 2605521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress.
    Ahmad A; Rasheed N; Banu N; Palit G
    Stress; 2010 Jul; 13(4):355-64. PubMed ID: 20536337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormalities of cerebral oxidative metabolism in animal models of Parkinson disease.
    Harik SI; LaManna JC; Snyder S; Wetherbee JR; Rosenthal M
    Neurology; 1982 Apr; 32(4):382-9. PubMed ID: 6278364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic dysfunction in Parkinson's disease.
    Picconi B; Piccoli G; Calabresi P
    Adv Exp Med Biol; 2012; 970():553-72. PubMed ID: 22351072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.
    Cunha AS; Matheus FC; Moretti M; Sampaio TB; Poli A; Santos DB; Colle D; Cunha MP; Blum-Silva CH; Sandjo LP; Reginatto FH; Rodrigues AL; Farina M; Prediger RD
    Behav Brain Res; 2016 Oct; 312():64-76. PubMed ID: 27306571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term glial cell line-derived neurotrophic factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and increase of tetrahydrobiopterin production.
    Sajadi A; Bauer M; Thöny B; Aebischer P
    J Neurochem; 2005 Jun; 93(6):1482-6. PubMed ID: 15935064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesocortical dopamine neurons: rapid transmitter turnover compared to other brain catecholamine systems.
    Bannon MJ; Bunney EB; Roth RH
    Brain Res; 1981 Aug; 218(1-2):376-82. PubMed ID: 7272743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates.
    Maker HS; Weiss C; Silides DJ; Cohen G
    J Neurochem; 1981 Feb; 36(2):589-93. PubMed ID: 7463078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen peroxide production in dopamine neurons.
    Spina MB; Cohen G
    Basic Life Sci; 1988; 49():1011-4. PubMed ID: 3250463
    [No Abstract]   [Full Text] [Related]  

  • 18. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity.
    Kuhn DM; Francescutti-Verbeem DM; Thomas DM
    Ann N Y Acad Sci; 2008 Oct; 1139():118-26. PubMed ID: 18991856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of autologous sympathetic neurons as a potential strategy to restore metabolic functions of the damaged nigrostriatal dopamine nerve terminals in Parkinson's disease.
    Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T
    Brain Res Rev; 2006 Sep; 52(2):244-56. PubMed ID: 16644019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of repeated doses of (-) deprenyl on the dynamics of monoaminergic transmission. Comparison with clorgyline.
    Zsilla G; Földi P; Held G; Székely AM; Knoll J
    Pol J Pharmacol Pharm; 1986; 38(1):57-67. PubMed ID: 3020531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.