BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29192060)

  • 1. High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation.
    Koraïchi F; Gence R; Bouchenot C; Grosjean S; Lajoie-Mazenc I; Favre G; Cabantous S
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29192060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liposome-Based Methods to Study GTPase Activation by Phosphoinositides.
    Viaud J; Ceccato L; Payrastre B; Gaits-Iacovoni F
    Methods Mol Biol; 2021; 2251():185-194. PubMed ID: 33481240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay.
    Castillo S; Gence R; Pagan D; Koraïchi F; Bouchenot C; Pons BJ; Boëlle B; Olichon A; Lajoie-Mazenc I; Favre G; Pédelacq JD; Cabantous S
    Eur J Cell Biol; 2023 Dec; 102(4):151355. PubMed ID: 37639782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Throughput Assay for Rho Guanine Nucleotide Exchange Factors Based on the Transcreener GDP Assay.
    Reichman M; Schabdach A; Kumar M; Zielinski T; Donover PS; Laury-Kleintop LD; Lowery RG
    J Biomol Screen; 2015 Dec; 20(10):1294-9. PubMed ID: 26195453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal analysis of RhoA/B/C activation in primary human endothelial cells.
    Reinhard NR; van Helden SF; Anthony EC; Yin T; Wu YI; Goedhart J; Gadella TW; Hordijk PL
    Sci Rep; 2016 May; 6():25502. PubMed ID: 27147504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor-induced leak.
    Khan A; Ni W; Baltazar T; Lopez-Giraldez F; Pober JS; Pierce RW
    FASEB J; 2022 Apr; 36(4):e22254. PubMed ID: 35294066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.
    Peurois F; Veyron S; Ferrandez Y; Ladid I; Benabdi S; Zeghouf M; Peyroche G; Cherfils J
    Biochem J; 2017 Mar; 474(7):1259-1272. PubMed ID: 28196833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling.
    Boissier P; Huynh-Do U
    Cell Signal; 2014 Mar; 26(3):483-91. PubMed ID: 24308970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV) Infected Glioblastoma Cells.
    Tseliou M; Al-Qahtani A; Alarifi S; Alkahtani SH; Stournaras C; Sourvinos G
    Cell Physiol Biochem; 2016; 38(1):94-109. PubMed ID: 26741994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TGFβ-induced early activation of the small GTPase RhoA is Smad2/3-independent and involves Src and the guanine nucleotide exchange factor Vav2.
    Papadimitriou E; Kardassis D; Moustakas A; Stournaras C
    Cell Physiol Biochem; 2011; 28(2):229-38. PubMed ID: 21865730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities.
    Mondal S; Hsiao K; Goueli SA
    Assay Drug Dev Technol; 2015 Oct; 13(8):444-55. PubMed ID: 26167953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual observation of the ATP-evoked small GTPase activation and Ca
    Nakahata Y; Nabekura J; Murakoshi H
    Sci Rep; 2016 Dec; 6():39564. PubMed ID: 28004840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric RhoB GTPase Activity Assay.
    Zaoui K; Duhamel S
    Bio Protoc; 2020 May; 10(9):e3609. PubMed ID: 33659574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways.
    Blangy A; Fort P
    Enzymes; 2013; 33 Pt A():169-91. PubMed ID: 25033805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.
    Marshall CB; Meiri D; Smith MJ; Mazhab-Jafari MT; Gasmi-Seabrook GM; Rottapel R; Stambolic V; Ikura M
    Methods; 2012 Aug; 57(4):473-85. PubMed ID: 22750304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Rho GEF and GAP activity through a sensitive split luciferase assay system.
    Anderson EL; Hamann MJ
    Biochem J; 2012 Feb; 441(3):869-79. PubMed ID: 22004470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors.
    Heo J; Thapar R; Campbell SL
    Biochemistry; 2005 May; 44(17):6573-85. PubMed ID: 15850391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G Protein betagamma subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production.
    Niu J; Profirovic J; Pan H; Vaiskunaite R; Voyno-Yasenetskaya T
    Circ Res; 2003 Oct; 93(9):848-56. PubMed ID: 14512443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Real-Time NMR GTPase Assay for Simultaneous Monitoring of Multiple Guanine Nucleotide Exchange Factor Activities from Human Cancer Cells and Organoids.
    Gebregiworgis T; Marshall CB; Nishikawa T; Radulovich N; Sandí MJ; Fang Z; Rottapel R; Tsao MS; Ikura M
    J Am Chem Soc; 2018 Apr; 140(13):4473-4476. PubMed ID: 29543440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Systemic Identification and Functionality Profiling for Cdc42 Homeostatic Modulators.
    Malasala S; Azimian F; Chen YH; Twiss JL; Boykin C; Akhtar SN; Lu Q
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.