These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29192277)

  • 1. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.
    Barik A; Zhang Y; Grassi R; Nadappuram BP; Edel JB; Low T; Koester SJ; Oh SH
    Nat Commun; 2017 Nov; 8(1):1867. PubMed ID: 29192277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
    Barik A; Chen X; Oh SH
    Nano Lett; 2016 Oct; 16(10):6317-6324. PubMed ID: 27602796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Far-field position-tunable trapping of dielectric particles using a graphene-based plasmonic lens.
    Hemayat S; Darbari S
    Opt Express; 2022 Feb; 30(4):5512-5530. PubMed ID: 35209512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individual Template-Stripped Conductive Gold Pyramids for Tip-Enhanced Dielectrophoresis.
    Jose J; Kress S; Barik A; Otto LM; Shaver J; Johnson TW; Lapin ZJ; Bharadwaj P; Novotny L; Oh SH
    ACS Photonics; 2014 May; 1(5):464-470. PubMed ID: 25541619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-Based Opto-Thermoelectric Tweezers.
    Wang X; Yuan Y; Xie X; Zhang Y; Min C; Yuan X
    Adv Mater; 2022 Feb; 34(8):e2107691. PubMed ID: 34897844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Manipulation of Biomolecules with Insulator-Based Dielectrophoretic Tweezers.
    Oh M; Jayasooriya V; Woo SO; Nawarathna D; Choi Y
    ACS Appl Nano Mater; 2020 Jan; 3(1):797-805. PubMed ID: 32587952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors.
    Jeong SJ; Gu Y; Heo J; Yang J; Lee CS; Lee MH; Lee Y; Kim H; Park S; Hwang S
    Sci Rep; 2016 Feb; 6():20907. PubMed ID: 26861833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Sci Rep; 2017 Nov; 7(1):14533. PubMed ID: 29109398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity.
    Chaurey V; Rohani A; Su YH; Liao KT; Chou CF; Swami NS
    Electrophoresis; 2013 Apr; 34(7):1097-104. PubMed ID: 23436401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large area graphene nanomesh: an artificial platform for edge-electrochemical biosensing at the sub-attomolar level.
    Zribi B; Castro-Arias JM; Decanini D; Gogneau N; Dragoe D; Cattoni A; Ouerghi A; Korri-Youssoufi H; Haghiri-Gosnet AM
    Nanoscale; 2016 Aug; 8(34):15479-85. PubMed ID: 27523903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All optical dynamic nanomanipulation with active colloidal tweezers.
    Ghosh S; Ghosh A
    Nat Commun; 2019 Sep; 10(1):4191. PubMed ID: 31519902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate.
    Chen L; Zhang T; Li X; Wang G
    Opt Express; 2013 Nov; 21(23):28628-37. PubMed ID: 24514374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When biomolecules meet graphene: from molecular level interactions to material design and applications.
    Li D; Zhang W; Yu X; Wang Z; Su Z; Wei G
    Nanoscale; 2016 Dec; 8(47):19491-19509. PubMed ID: 27878179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal oxide-resistive memory using graphene-edge electrodes.
    Lee S; Sohn J; Jiang Z; Chen HY; Philip Wong HS
    Nat Commun; 2015 Sep; 6():8407. PubMed ID: 26406356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurements of absolute dielectrophoretic forces using optical tweezers.
    Hong Y; Pyo JW; Baek SH; Lee SW; Yoon DS; No K; Kim BM
    Opt Lett; 2010 Jul; 35(14):2493-5. PubMed ID: 20634874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of graphene electrode in transparent microwell arrays for high throughput cell trapping and lysis.
    Ameri SK; Singh PK; Sonkusale S
    Biosens Bioelectron; 2014 Nov; 61():625-30. PubMed ID: 24967752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.