These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29192697)

  • 1. Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique.
    Calahorra Y; Smith M; Datta A; Benisty H; Kar-Narayan S
    Nanoscale; 2017 Dec; 9(48):19290-19297. PubMed ID: 29192697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin film piezoelectric response characterisation using atomic force microscopy with standard contact mode imaging.
    Sriram S; Bhaskaran M; Short KT; Matthews GI; Holland AS
    Micron; 2009 Jan; 40(1):109-13. PubMed ID: 18296057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Apparent Ferroelectricity in Perovskite Nanofibers.
    Ganeshkumar R; Somnath S; Cheah CW; Jesse S; Kalinin SV; Zhao R
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42131-42138. PubMed ID: 29130311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-Area Ferroelectric, Piezoelectric and Conductive Properties of Single BiFeO₃ Nanowire by Scanning Probe Microscopy.
    Wu S; Zhang J; Liu X; Lv S; Gao R; Cai W; Wang F; Fu C
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30717369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferroelectricity-free lead halide perovskites.
    Gómez A; Wang Q; Goñi AR; Campoy-Quiles M; Abate A
    Energy Environ Sci; 2019 Aug; 12(8):2537-2547. PubMed ID: 34777574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of electrostatic interactions due to surface potential in piezoresponse force microscopy.
    Seol D; Kang S; Sun C; Kim Y
    Ultramicroscopy; 2019 Dec; 207():112839. PubMed ID: 31494481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Ferroelectric Characterization with Heterodyne Megasonic Piezoresponse Force Microscopy.
    Zeng Q; Wang H; Xiong Z; Huang Q; Lu W; Sun K; Fan Z; Zeng K
    Adv Sci (Weinh); 2021 Apr; 8(8):2003993. PubMed ID: 33898182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved open-circuit conductive atomic force microscopy for direct electromechanical characterisation.
    Calahorra Y; Kim W; Vukajlovic-Plestina J; Fontcuberta I Morral A; Kar-Narayan S
    Nanotechnology; 2020 Oct; 31(40):404003. PubMed ID: 32521513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in the Nanoscale Evaluation of Piezoelectric and Ferroelectric Properties via Scanning Probe Microscopy.
    Kwon O; Seol D; Qiao H; Kim Y
    Adv Sci (Weinh); 2020 Sep; 7(17):1901391. PubMed ID: 32995111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials.
    Abdollahi A; Domingo N; Arias I; Catalan G
    Nat Commun; 2019 Mar; 10(1):1266. PubMed ID: 30894544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate electromechanical characterization of soft molecular monolayers using piezo force microscopy.
    Miller NC; Grimm HM; Horne WS; Hutchison GR
    Nanoscale Adv; 2019 Dec; 1(12):4834-4843. PubMed ID: 36133108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric displacement mapping of compliant surfaces by constant-excitation frequency-modulation piezoresponse force microscopy.
    Labardi M; Magnani A; Capaccioli S
    Nanotechnology; 2020 Feb; 31(7):075707. PubMed ID: 31665710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope.
    Zhao J; Gong W; Cai W; Shang G
    Rev Sci Instrum; 2013 Aug; 84(8):083706. PubMed ID: 24007072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques.
    Zhou X; Miao H; Li F
    Nanoscale; 2013 Dec; 5(23):11885-93. PubMed ID: 24129833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and converse piezoelectric responses at the nanoscale from epitaxial BiFeO
    Vila-Fungueiriño JM; Gómez A; Antoja-Lleonart J; Gázquez J; Magén C; Noheda B; Carretero-Genevrier A
    Nanoscale; 2018 Nov; 10(43):20155-20161. PubMed ID: 30259954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Transverse Piezoelectricity in a Halide Perovskite Molecular Ferroelectric Thin Film.
    Wang ZX; Zhang H; Wang F; Cheng H; He WH; Liu YH; Huang XQ; Li PF
    J Am Chem Soc; 2020 Jul; 142(29):12857-12864. PubMed ID: 32602714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non-Contact Heterodyne Electrostrain Force Microscopy.
    Zeng Q; Huang Q; Wang H; Li C; Fan Z; Chen D; Cheng Y; Zeng K
    Small Methods; 2021 Nov; 5(11):e2100639. PubMed ID: 34927968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.
    Wang X; He X; Zhu H; Sun L; Fu W; Wang X; Hoong LC; Wang H; Zeng Q; Zhao W; Wei J; Jin Z; Shen Z; Liu J; Zhang T; Liu Z
    Sci Adv; 2016 Jul; 2(7):e1600209. PubMed ID: 27419234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterisation (invited).
    Rabe U; Kopycinska M; Hirsekorn S; Arnold W
    Ultrasonics; 2002 May; 40(1-8):49-54. PubMed ID: 12159988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.