These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29192914)

  • 1. Ab initio analysis on potential superbases of several hyperlithiated species: Li
    Winfough M; Meloni G
    Dalton Trans; 2017 Dec; 47(1):159-168. PubMed ID: 29192914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better Than Li-Related Species and Their Enhanced Properties: An Ab Initio Exploration.
    Pandey SK
    ACS Omega; 2021 Nov; 6(46):31077-31092. PubMed ID: 34841150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of carbon dioxide with a superalkali.
    Park H; Meloni G
    Dalton Trans; 2017 Sep; 46(35):11942-11949. PubMed ID: 28853465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivatives of azacalix[3](2,6)pyridine are strong neutral organic superbases: a DFT study.
    Despotović I; Kovacević B; Maksić ZB
    Org Lett; 2007 Mar; 9(6):1101-4. PubMed ID: 17311392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality.
    Vazdar K; Margetić D; Kovačević B; Sundermeyer J; Leito I; Jahn U
    Acc Chem Res; 2021 Aug; 54(15):3108-3123. PubMed ID: 34308625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the enthalpy of formation, proton affinity, and gas-phase basicity of gamma-butyrolactone and 2-pyrrolidinone by isodesmic reactions.
    Vessecchi R; Galembeck SE
    J Phys Chem A; 2008 May; 112(17):4060-6. PubMed ID: 18380497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Interactions in Iminophosphorane Superbase Complexes with Carbon Dioxide.
    Ingrosso F; Ruiz-López MF
    J Phys Chem A; 2018 Feb; 122(6):1764-1770. PubMed ID: 29346729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglycine conformational analysis: calculated vs experimental gas-phase basicities and proton affinities.
    Chung-Phillips A
    J Phys Chem A; 2005 Jul; 109(26):5917-32. PubMed ID: 16833926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing the Azaazulene Scaffolds in the Design of New Organic Superbases.
    Barić D
    ACS Omega; 2019 Sep; 4(12):15197-15207. PubMed ID: 31552365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogenated superalkalis and their possible applications.
    Srivastava AK; Misra N
    J Mol Model; 2016 Jun; 22(6):122. PubMed ID: 27168197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino, Ammonio and Aminioethenes: A Theoretical Study of their Structure and Energetics.
    Miranda MS; Esteves da Silva JC; Castillo A; Frank AT; Greer A; Brown JA; Davis BC; Liebman JF
    J Phys Org Chem; 2013 Aug; 26(8):613-625. PubMed ID: 24019594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution.
    Kaljurand I; Saame J; Rodima T; Koppel I; Koppel IA; Kögel JF; Sundermeyer J; Köhn U; Coles MP; Leito I
    J Phys Chem A; 2016 Apr; 120(16):2591-604. PubMed ID: 27093092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric and computational study of the thermochemistry of phenoxyphenols.
    Ribeiro da Silva MA; Lobo Ferreira AI; Cimas Á
    J Org Chem; 2011 May; 76(10):3754-64. PubMed ID: 21486007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases.
    Psciuk BT; Lord RL; Munk BH; Schlegel HB
    J Chem Theory Comput; 2012 Dec; 8(12):5107-23. PubMed ID: 26593200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Exceptionally Strong Organic Superbases Based on Aromatic Pnictogen Oxides: Computational DFT Analysis of the Oxygen Basicity in the Gas Phase and Acetonitrile Solution.
    Tandarić T; Vianello R
    J Phys Chem A; 2018 Feb; 122(5):1464-1471. PubMed ID: 29350532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
    Kolomeitsev AA; Koppel IA; Rodima T; Barten J; Lork E; Röschenthaler GV; Kaljurand I; Kütt A; Koppel I; Mäemets V; Leito I
    J Am Chem Soc; 2005 Dec; 127(50):17656-66. PubMed ID: 16351095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio determination of the proton affinities of small neutral and anionic molecules.
    DeFrees DJ; McLean AD
    J Comput Chem; 1986; 7(3):321-33. PubMed ID: 11542030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer.
    Range K; Riccardi D; Cui Q; Elstner M; York DM
    Phys Chem Chem Phys; 2005 Aug; 7(16):3070-9. PubMed ID: 16186912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,8-Bis(hexamethyltriaminophosphazenyl)naphthalene, HMPN: a superbasic bisphosphazene "proton sponge".
    Raab V; Gauchenova E; Merkoulov A; Harms K; Sundermeyer J; Kovacević B; Maksić ZB
    J Am Chem Soc; 2005 Nov; 127(45):15738-43. PubMed ID: 16277515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum monocation basicity and affinity scales.
    Gal JF; Yáñez M; Mó O
    Eur J Mass Spectrom (Chichester); 2015; 21(3):517-32. PubMed ID: 26307732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.