These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 29192925)
1. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers. Smith CE; Xie Z; Bâldea I; Frisbie CD Nanoscale; 2018 Jan; 10(3):964-975. PubMed ID: 29192925 [TBL] [Abstract][Full Text] [Related]
2. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: effect of surface linking group and metal work function. Kim B; Choi SH; Zhu XY; Frisbie CD J Am Chem Soc; 2011 Dec; 133(49):19864-77. PubMed ID: 22017173 [TBL] [Abstract][Full Text] [Related]
3. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function. Xie Z; Bâldea I; Smith CE; Wu Y; Frisbie CD ACS Nano; 2015 Aug; 9(8):8022-36. PubMed ID: 26190402 [TBL] [Abstract][Full Text] [Related]
4. Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. Kim B; Beebe JM; Jun Y; Zhu XY; Frisbie CD J Am Chem Soc; 2006 Apr; 128(15):4970-1. PubMed ID: 16608328 [TBL] [Abstract][Full Text] [Related]
5. Determination of Energy-Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes. Xie Z; Bâldea I; Frisbie CD J Am Chem Soc; 2019 Feb; 141(8):3670-3681. PubMed ID: 30685965 [TBL] [Abstract][Full Text] [Related]
6. Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function. Beebe JM; Engelkes VB; Miller LL; Frisbie CD J Am Chem Soc; 2002 Sep; 124(38):11268-9. PubMed ID: 12236731 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. Li C; Mishchenko A; Li Z; Pobelov I; Wandlowski T; Li XQ; Würthner F; Bagrets A; Evers F J Phys Condens Matter; 2008 Sep; 20(37):374122. PubMed ID: 21694429 [TBL] [Abstract][Full Text] [Related]
8. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance. Engelkes VB; Beebe JM; Frisbie CD J Am Chem Soc; 2004 Nov; 126(43):14287-96. PubMed ID: 15506797 [TBL] [Abstract][Full Text] [Related]
9. Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes. Xie Z; Bâldea I; Frisbie CD J Am Chem Soc; 2019 Nov; 141(45):18182-18192. PubMed ID: 31617711 [TBL] [Abstract][Full Text] [Related]
10. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions. Han Y; Maglione MS; Diez Cabanes V; Casado-Montenegro J; Yu X; Karuppannan SK; Zhang Z; Crivillers N; Mas-Torrent M; Rovira C; Cornil J; Veciana J; Nijhuis CA ACS Appl Mater Interfaces; 2020 Dec; 12(49):55044-55055. PubMed ID: 33237732 [TBL] [Abstract][Full Text] [Related]
11. Effect of Heteroatom Substitution on Transport in Alkanedithiol-Based Molecular Tunnel Junctions: Evidence for Universal Behavior. Xie Z; Bâldea I; Oram S; Smith CE; Frisbie CD ACS Nano; 2017 Jan; 11(1):569-578. PubMed ID: 27936325 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. Wold DJ; Frisbie CD J Am Chem Soc; 2001 Jun; 123(23):5549-56. PubMed ID: 11389638 [TBL] [Abstract][Full Text] [Related]