BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29193189)

  • 1. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed.
    Biancarosa I; Belghit I; Bruckner CG; Liland NS; Waagbø R; Amlund H; Heesch S; Lock EJ
    J Sci Food Agric; 2018 Mar; 98(5):2035-2042. PubMed ID: 29193189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals.
    Øverland M; Mydland LT; Skrede A
    J Sci Food Agric; 2019 Jan; 99(1):13-24. PubMed ID: 29797494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed.
    Maehre HK; Malde MK; Eilertsen KE; Elvevoll EO
    J Sci Food Agric; 2014 Dec; 94(15):3281-90. PubMed ID: 24700148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace metal occurrence in Mediterranean seaweeds.
    Squadrone S; Brizio P; Battuello M; Nurra N; Sartor RM; Riva A; Staiti M; Benedetto A; Pessani D; Abete MC
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9708-9721. PubMed ID: 29368198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of heavy metals and arsenic in black soldier fly (Hermetia illucens) larvae grown on seaweed-enriched media.
    Biancarosa I; Liland NS; Biemans D; Araujo P; Bruckner CG; Waagbø R; Torstensen BE; Lock EJ; Amlund H
    J Sci Food Agric; 2018 Apr; 98(6):2176-2183. PubMed ID: 28960324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat.
    Pawlik-Skowrońska B; Pirszel J; Brown MT
    Aquat Toxicol; 2007 Jul; 83(3):190-9. PubMed ID: 17532484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical composition and heavy metal content of Chilean seaweeds: Potential applications of seaweed meal as food and feed ingredients.
    Véliz K; Toledo P; Araya M; Gómez MF; Villalobos V; Tala F
    Food Chem; 2023 Jan; 398():133866. PubMed ID: 35964561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Marine algae of Baja California Sur, Mexico: nutritional value].
    Carrillo Domínguez S; Casas Valdez M; Ramos Ramos F; Pérez-Gil F; Sánchez Rodríguez I
    Arch Latinoam Nutr; 2002 Dec; 52(4):400-5. PubMed ID: 12868282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halogen content relative to the chemical and biochemical composition of fifteen marine macro and micro algae: nutritional value, energy supply, antioxidant potency, and health risk assessment.
    El Zokm GM; Ismail MM; El-Said GF
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14893-14908. PubMed ID: 33222067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed.
    Monagail MM; Cummins E; Bermejo R; Daly E; Costello D; Morrison L
    Environ Int; 2018 Sep; 118():314-324. PubMed ID: 29935490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products.
    Nitschke U; Stengel DB
    Food Chem; 2015 Apr; 172():326-34. PubMed ID: 25442561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic in edible macroalgae: an integrated approach.
    Camurati JR; Salomone VN
    J Toxicol Environ Health B Crit Rev; 2020; 23(1):1-12. PubMed ID: 31578125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uptake of Cd, Cr, and Zn by the macroalga Enteromorpha crinita and subsequent transfer to the marine herbivorous rabbitfish, Siganus canaliculatus.
    Chan SM; Wang WX; Ni IH
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):298-306. PubMed ID: 12712288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel postharvest processing strategies for value-added applications of marine algae.
    Zhu X; Healy L; Zhang Z; Maguire J; Sun DW; Tiwari BK
    J Sci Food Agric; 2021 Aug; 101(11):4444-4455. PubMed ID: 33608900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review.
    Costa M; Cardoso C; Afonso C; Bandarra NM; Prates JAM
    J Anim Physiol Anim Nutr (Berl); 2021 Nov; 105(6):1075-1102. PubMed ID: 33660883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results.
    Adamse P; Van der Fels-Klerx HJI; de Jong J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Aug; 34(8):1298-1311. PubMed ID: 28278122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minerals from Macroalgae Origin: Health Benefits and Risks for Consumers.
    Circuncisão AR; Catarino MD; Cardoso SM; Silva AMS
    Mar Drugs; 2018 Oct; 16(11):. PubMed ID: 30360515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ?
    Foster S; Maher W
    J Environ Sci (China); 2016 Nov; 49():131-139. PubMed ID: 28007168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation of arsenic in milk from cows fed seaweed.
    Xiong C; Petursdottir AH; Rikhardsson G; Stergiadis S; Raab A; Feldmann J
    J Sci Food Agric; 2024 Apr; ():. PubMed ID: 38597303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.