These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29193534)

  • 41. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Comparative analysis of post-translational modifications in plasma proteome of patients with cerebral ischemia based on HPLC-MS/MS method].
    Kisrieva YS; Petushkova NA; Samenkova NF; Kuznetsova GP; Larina OB; Teryaeva NB; Usachev DY; Zgoda VG; Karuzina II
    Biomed Khim; 2019 Apr; 65(3):251-258. PubMed ID: 31258150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber.
    Touriño S; Fuguet E; Jáuregui O; Saura-Calixto F; Cascante M; Torres JL
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3489-500. PubMed ID: 18853405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale identification of ubiquitination sites by mass spectrometry.
    Udeshi ND; Mertins P; Svinkina T; Carr SA
    Nat Protoc; 2013 Oct; 8(10):1950-60. PubMed ID: 24051958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome.
    Fulzele A; Bennett EJ
    Methods Mol Biol; 2018; 1844():363-384. PubMed ID: 30242721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and performance evaluation of an ultralow flow nanoliquid chromatography-tandem mass spectrometry set-up.
    Köcher T; Pichler P; De Pra M; Rieux L; Swart R; Mechtler K
    Proteomics; 2014 Sep; 14(17-18):1999-2007. PubMed ID: 24920484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeted comparative proteomics by liquid chromatography/matrix-assisted laser desorption/ionization triple-quadrupole mass spectrometry.
    Melanson JE; Chisholm KA; Pinto DM
    Rapid Commun Mass Spectrom; 2006; 20(5):904-10. PubMed ID: 16470697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches.
    Holtz A; Basisty N; Schilling B
    Methods Mol Biol; 2021; 2228():225-235. PubMed ID: 33950494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simple strategies to enhance discovery of acetylation post-translational modifications by quadrupole-orbitrap LC-MS/MS.
    Manning AJ; Lee J; Wolfgeher DJ; Kron SJ; Greenberg JT
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):224-229. PubMed ID: 29050961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid separation and identification of phenolic and diterpenoid constituents from Radix Salvia miltiorrhizae by high-performance liquid chromatography diode-array detection, electrospray ionization time-of-flight mass spectrometry and electrospray ionization quadrupole ion trap mass spectrometry.
    Zhu Z; Zhang H; Zhao L; Dong X; Li X; Chai Y; Zhang G
    Rapid Commun Mass Spectrom; 2007; 21(12):1855-65. PubMed ID: 17510941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mass spectrometric analysis of histone posttranslational modifications.
    Burlingame AL; Zhang X; Chalkley RJ
    Methods; 2005 Aug; 36(4):383-94. PubMed ID: 16112065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of phenylthiocarbamoyl-derivatized peptides by electrospray ionization mass spectrometry: selective isolation and analysis of modified multiply charged peptides for liquid chromatography-tandem mass spectrometry experiments.
    Sanchez A; Perez-Riverol Y; González LJ; Noda J; Betancourt L; Ramos Y; Gil J; Vera R; Padrón G; Besada V
    Anal Chem; 2010 Oct; 82(20):8492-501. PubMed ID: 20853852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyphenated LC-MALDI-ToF/ToF and LC-ESI-QToF approach in proteomic characterization of honeybee venom.
    Matysiak J; Hajduk J; Mayer F; Hebeler R; Kokot ZJ
    J Pharm Biomed Anal; 2016 Mar; 121():69-76. PubMed ID: 26780156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection and identification of heme c-modified peptides by histidine affinity chromatography, high-performance liquid chromatography-mass spectrometry, and database searching.
    Merkley ED; Anderson BJ; Park J; Belchik SM; Shi L; Monroe ME; Smith RD; Lipton MS
    J Proteome Res; 2012 Dec; 11(12):6147-58. PubMed ID: 23082897
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of staphylococcal species based on variations in protein sequences (mass spectrometry) and DNA sequence (sodA microarray).
    Kooken J; Fox K; Fox A; Altomare D; Creek K; Wunschel D; Pajares-Merino S; Martínez-Ballesteros I; Garaizar J; Oyarzabal O; Samadpour M
    Mol Cell Probes; 2014 Feb; 28(1):41-50. PubMed ID: 24184563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-field asymmetric waveform ion mobility spectrometry coupled with liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-FAIMS-MS/MS) multi-component bioanalytical method development, performance evaluation and demonstration of the constancy of the compensation voltage with change of mobile phase composition or flow rate.
    Wu ST; Xia YQ; Jemal M
    Rapid Commun Mass Spectrom; 2007; 21(22):3667-76. PubMed ID: 17939154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project.
    Li X; Gong Y; Wang Y; Wu S; Cai Y; He P; Lu Z; Ying W; Zhang Y; Jiao L; He H; Zhang Z; He F; Zhao X; Qian X
    Proteomics; 2005 Aug; 5(13):3423-41. PubMed ID: 16052619
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes.
    Zhang N; Shaw AR; Li N; Chen R; Mak A; Hu X; Young N; Wishart D; Li L
    Anal Chim Acta; 2008 Oct; 627(1):82-90. PubMed ID: 18790130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.