These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 29193657)
1. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications. Ding Y; Lin J; Wen C; Zhang D; Li Y J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2425-2434. PubMed ID: 29193657 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications. Ding Y; Lin J; Wen C; Zhang D; Li Y Sci Rep; 2016 Aug; 6():31990. PubMed ID: 27553403 [TBL] [Abstract][Full Text] [Related]
4. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Tong X; Dong Y; Zhou R; Shen X; Li Y; Jiang Y; Wang H; Wang J; Lin J; Wen C Adv Healthc Mater; 2024 May; 13(12):e2303975. PubMed ID: 38235953 [TBL] [Abstract][Full Text] [Related]
6. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Munir K; Lin J; Wen C; Wright PFA; Li Y Acta Biomater; 2020 Jan; 102():493-507. PubMed ID: 31811958 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable Zn-Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications. Tong X; Han Y; Zhou R; Jiang W; Zhu L; Li Y; Huang S; Ma J; Wen C; Lin J Acta Biomater; 2023 Jan; 155():684-702. PubMed ID: 36328128 [TBL] [Abstract][Full Text] [Related]
8. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
9. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Brar HS; Wong J; Manuel MV J Mech Behav Biomed Mater; 2012 Mar; 7():87-95. PubMed ID: 22340688 [TBL] [Abstract][Full Text] [Related]
11. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Bian D; Zhou W; Deng J; Liu Y; Li W; Chu X; Xiu P; Cai H; Kou Y; Jiang B; Zheng Y Acta Biomater; 2017 Dec; 64():421-436. PubMed ID: 28987782 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218 [TBL] [Abstract][Full Text] [Related]
13. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
14. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837 [TBL] [Abstract][Full Text] [Related]
15. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Yang L; Ma L; Huang Y; Feyerabend F; Blawert C; Höche D; Willumeit-Römer R; Zhang E; Kainer KU; Hort N Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1351-1358. PubMed ID: 28415426 [TBL] [Abstract][Full Text] [Related]
16. An osteogenic magnesium alloy with improved corrosion resistance, antibacterial, and mechanical properties for orthopedic applications. Aboutalebianaraki N; Zeblisky P; Sarker MD; Jeyaranjan A; Sakthivel TS; Fu Y; Lucchi J; Baudelet M; Seal S; Kean TJ; Razavi M J Biomed Mater Res A; 2023 Apr; 111(4):556-574. PubMed ID: 36494895 [TBL] [Abstract][Full Text] [Related]
17. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys. Yang L; Huang Y; Feyerabend F; Willumeit R; Kainer KU; Hort N J Mech Behav Biomed Mater; 2012 Sep; 13():36-44. PubMed ID: 22842274 [TBL] [Abstract][Full Text] [Related]
18. An in vitro and in vivo characterization of fine WE43B magnesium wire with varied thermomechanical processing conditions. Griebel AJ; Schaffer JE; Hopkins TM; Alghalayini A; Mkorombindo T; Ojo KO; Xu Z; Little KJ; Pixley SK J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1987-1997. PubMed ID: 28990317 [TBL] [Abstract][Full Text] [Related]
19. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
20. Development of biodegradable Zn-1Mg-0.1RE (RE = Er, Dy, and Ho) alloys for biomedical applications. Tong X; Zhang D; Lin J; Dai Y; Luan Y; Sun Q; Shi Z; Wang K; Gao Y; Lin J; Li Y; Dargusch M; Wen C Acta Biomater; 2020 Nov; 117():384-399. PubMed ID: 33007488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]