These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 29193959)
1. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959 [TBL] [Abstract][Full Text] [Related]
2. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. Wang J; Feng B; Su J; Guo L ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404 [TBL] [Abstract][Full Text] [Related]
4. Interface Engineering of CoFe-LDH Modified Ti: α-Fe Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609 [TBL] [Abstract][Full Text] [Related]
5. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422 [TBL] [Abstract][Full Text] [Related]
7. Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode. Gong L; Xie J; Liang X; Xiong J; Yi S; Zhang X; Li CM J Colloid Interface Sci; 2019 Apr; 542():441-450. PubMed ID: 30772507 [TBL] [Abstract][Full Text] [Related]
8. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
9. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
10. Ferrihydrite-Modified Ti-Fe Bu Q; Li S; Wu Q; Bi L; Lin Y; Wang D; Zou X; Xie T ChemSusChem; 2018 Oct; 11(19):3486-3494. PubMed ID: 30091281 [TBL] [Abstract][Full Text] [Related]
11. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation. Xie H; Song Y; Jiao Y; Gao L; Shi S; Wang C; Hou J ACS Nano; 2024 Feb; ():. PubMed ID: 38343104 [TBL] [Abstract][Full Text] [Related]
12. In Situ Synthesis of α-Fe Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580 [TBL] [Abstract][Full Text] [Related]
13. In situ growth of α-Fe Li C; Chen Z; Yuan W; Xu QH; Li CM Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647 [TBL] [Abstract][Full Text] [Related]
14. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation. Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155 [TBL] [Abstract][Full Text] [Related]
16. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
17. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al Zhou Z; Wu S; Li L; Li L; Li X ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304 [TBL] [Abstract][Full Text] [Related]
18. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
19. Serial hole transfer layers for a BiVO Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370 [TBL] [Abstract][Full Text] [Related]
20. Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode. Ding C; Wang Z; Shi J; Yao T; Li A; Yan P; Huang B; Li C ACS Appl Mater Interfaces; 2016 Mar; 8(11):7086-91. PubMed ID: 26926845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]