BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29193970)

  • 1. Predicted Biological Activity of Purchasable Chemical Space.
    Irwin JJ; Gaskins G; Sterling T; Mysinger MM; Keiser MJ
    J Chem Inf Model; 2018 Jan; 58(1):148-164. PubMed ID: 29193970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZINC 15--Ligand Discovery for Everyone.
    Sterling T; Irwin JJ
    J Chem Inf Model; 2015 Nov; 55(11):2324-37. PubMed ID: 26479676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen-Rosenblatt window.
    Koutsoukas A; Lowe R; Kalantarmotamedi Y; Mussa HY; Klaffke W; Mitchell JB; Glen RC; Bender A
    J Chem Inf Model; 2013 Aug; 53(8):1957-66. PubMed ID: 23829430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of multitarget-directed ligands against Alzheimer's disease through systematic prediction of chemical-protein interactions.
    Fang J; Li Y; Liu R; Pang X; Li C; Yang R; He Y; Lian W; Liu AL; Du GH
    J Chem Inf Model; 2015 Jan; 55(1):149-64. PubMed ID: 25531792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity.
    Luo M; Wang XS; Tropsha A
    Mol Inform; 2016 Jan; 35(1):36-41. PubMed ID: 27491652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery.
    Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH
    J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics.
    Nigsch F; Bender A; Jenkins JL; Mitchell JB
    J Chem Inf Model; 2008 Dec; 48(12):2313-25. PubMed ID: 19055411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL).
    Alberga D; Trisciuzzi D; Montaruli M; Leonetti F; Mangiatordi GF; Nicolotti O
    J Chem Inf Model; 2019 Jan; 59(1):586-596. PubMed ID: 30485097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.
    Martin E; Mukherjee P
    J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Based Virtual Screening.
    Li Q; Shah S
    Methods Mol Biol; 2017; 1558():111-124. PubMed ID: 28150235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment-similarity-based QSAR (FS-QSAR) algorithm for ligand biological activity predictions.
    Myint KZ; Ma C; Wang L; Xie XQ
    SAR QSAR Environ Res; 2011 Jun; 22(3):385-410. PubMed ID: 21598200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of new bioactive molecules using a Bayesian belief network.
    Abdo A; Leclère V; Jacques P; Salim N; Pupin M
    J Chem Inf Model; 2014 Jan; 54(1):30-6. PubMed ID: 24392938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The purchasable chemical space: a detailed picture.
    Lucas X; Grüning BA; Bleher S; Günther S
    J Chem Inf Model; 2015 May; 55(5):915-24. PubMed ID: 25894297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods.
    Zdrazil B; Felix E; Hunter F; Manners EJ; Blackshaw J; Corbett S; de Veij M; Ioannidis H; Lopez DM; Mosquera JF; Magarinos MP; Bosc N; Arcila R; Kizilören T; Gaulton A; Bento AP; Adasme MF; Monecke P; Landrum GA; Leach AR
    Nucleic Acids Res; 2024 Jan; 52(D1):D1180-D1192. PubMed ID: 37933841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChEMBL web services: streamlining access to drug discovery data and utilities.
    Davies M; Nowotka M; Papadatos G; Dedman N; Gaulton A; Atkinson F; Bellis L; Overington JP
    Nucleic Acids Res; 2015 Jul; 43(W1):W612-20. PubMed ID: 25883136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.