These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 29194052)
1. Machine learning in heart failure: ready for prime time. Awan SE; Sohel F; Sanfilippo FM; Bennamoun M; Dwivedi G Curr Opin Cardiol; 2018 Mar; 33(2):190-195. PubMed ID: 29194052 [TBL] [Abstract][Full Text] [Related]
2. Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. Olsen CR; Mentz RJ; Anstrom KJ; Page D; Patel PA Am Heart J; 2020 Nov; 229():1-17. PubMed ID: 32905873 [TBL] [Abstract][Full Text] [Related]
3. Decision Support Systems in HF based on Deep Learning Technologies. Penso M; Solbiati S; Moccia S; Caiani EG Curr Heart Fail Rep; 2022 Apr; 19(2):38-51. PubMed ID: 35142985 [TBL] [Abstract][Full Text] [Related]
4. [Advances in heart failure clinical research based on deep learning]. Lei Y; Liu S; Wu Y; Li C; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):373-377. PubMed ID: 37139771 [TBL] [Abstract][Full Text] [Related]
5. Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Alonso-Betanzos A; Bolón-Canedo V Adv Exp Med Biol; 2018; 1065():607-626. PubMed ID: 30051410 [TBL] [Abstract][Full Text] [Related]
6. Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology. Syeda-Mahmood T J Am Coll Radiol; 2018 Mar; 15(3 Pt B):569-576. PubMed ID: 29502585 [TBL] [Abstract][Full Text] [Related]
7. The New Possibilities from "Big Data" to Overlooked Associations Between Diabetes, Biochemical Parameters, Glucose Control, and Osteoporosis. Kruse C Curr Osteoporos Rep; 2018 Jun; 16(3):320-324. PubMed ID: 29679305 [TBL] [Abstract][Full Text] [Related]
8. Machine learning: at the heart of failure diagnosis. Sanders WE; Burton T; Khosousi A; Ramchandani S Curr Opin Cardiol; 2021 Mar; 36(2):227-233. PubMed ID: 33443957 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning in Cardiology. Bizopoulos P; Koutsouris D IEEE Rev Biomed Eng; 2019; 12():168-193. PubMed ID: 30530339 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning in Medical Imaging. Giger ML J Am Coll Radiol; 2018 Mar; 15(3 Pt B):512-520. PubMed ID: 29398494 [TBL] [Abstract][Full Text] [Related]
11. Artificial intelligence in medical imaging of the liver. Zhou LQ; Wang JY; Yu SY; Wu GG; Wei Q; Deng YB; Wu XL; Cui XW; Dietrich CF World J Gastroenterol; 2019 Feb; 25(6):672-682. PubMed ID: 30783371 [TBL] [Abstract][Full Text] [Related]
12. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. Sakr S; Elshawi R; Ahmed AM; Qureshi WT; Brawner CA; Keteyian SJ; Blaha MJ; Al-Mallah MH BMC Med Inform Decis Mak; 2017 Dec; 17(1):174. PubMed ID: 29258510 [TBL] [Abstract][Full Text] [Related]
13. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance. Cust EE; Sweeting AJ; Ball K; Robertson S J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362 [TBL] [Abstract][Full Text] [Related]
14. Machine learning in cardiovascular medicine: are we there yet? Shameer K; Johnson KW; Glicksberg BS; Dudley JT; Sengupta PP Heart; 2018 Jul; 104(14):1156-1164. PubMed ID: 29352006 [TBL] [Abstract][Full Text] [Related]
15. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT. Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982 [TBL] [Abstract][Full Text] [Related]
16. Diagnosing Heart Failure from Chest X-Ray Images Using Deep Learning. Matsumoto T; Kodera S; Shinohara H; Ieki H; Yamaguchi T; Higashikuni Y; Kiyosue A; Ito K; Ando J; Takimoto E; Akazawa H; Morita H; Komuro I Int Heart J; 2020 Jul; 61(4):781-786. PubMed ID: 32684597 [TBL] [Abstract][Full Text] [Related]
18. Deep Belief Networks for Electroencephalography: A Review of Recent Contributions and Future Outlooks. Movahedi F; Coyle JL; Sejdic E IEEE J Biomed Health Inform; 2018 May; 22(3):642-652. PubMed ID: 28715343 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning for Biomedical Time Series Classification: From Shapelets to Deep Learning. Bock C; Moor M; Jutzeler CR; Borgwardt K Methods Mol Biol; 2021; 2190():33-71. PubMed ID: 32804360 [TBL] [Abstract][Full Text] [Related]
20. Predicting Risk of 30-Day Readmissions Using Two Emerging Machine Learning Methods. Mahajan SM; Mahajan AS; King R; Negahban S Stud Health Technol Inform; 2018; 250():250-255. PubMed ID: 29857454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]