BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29194629)

  • 1. UbiGate: a synthetic biology toolbox to analyse ubiquitination.
    Kowarschik K; Hoehenwarter W; Marillonnet S; Trujillo M
    New Phytol; 2018 Mar; 217(4):1749-1763. PubMed ID: 29194629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of the plant ubiquitination cascade in bacteria using a synthetic biology approach.
    Han Y; Sun J; Yang J; Tan Z; Luo J; Lu D
    Plant J; 2017 Aug; 91(4):766-776. PubMed ID: 28509348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexpression and Reconstitution of Enzymatic Cascades in Bacteria Using UbiGate.
    Kowarschik K; Trujillo M
    Methods Mol Biol; 2022; 2379():155-169. PubMed ID: 35188661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrative Synthetic Biology Approach to Interrogating Cellular Ubiquitin and Ufm Signaling.
    Li C; Han T; Guo R; Chen P; Peng C; Prag G; Hu R
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cracking the Ubiquitin Code: The Ubiquitin Toolbox.
    Mulder MPC; Witting KF; Ovaa H
    Curr Issues Mol Biol; 2020; 37():1-20. PubMed ID: 31674341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
    Lai HE; Moore S; Polizzi K; Freemont P
    Methods Mol Biol; 2018; 1772():429-444. PubMed ID: 29754244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-color pulse-chase ubiquitination assays to simultaneously monitor substrate priming and extension.
    Scott DC; Schulman BA
    Methods Enzymol; 2019; 618():29-48. PubMed ID: 30850057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arabidopsis Iron-Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4.
    Nagels Durand A; Iñigo S; Ritter A; Iniesto E; De Clercq R; Staes A; Van Leene J; Rubio V; Gevaert K; De Jaeger G; Pauwels L; Goossens A
    Plant Cell Physiol; 2016 Sep; 57(9):1801-13. PubMed ID: 27497447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Use of an Automated Platform to Assemble Multigenic Constructs for Plant Transformation.
    Mann DGJ; Bevan SA; Harvey AJ; Leffert-Sorenson RA
    Methods Mol Biol; 2019; 1864():19-35. PubMed ID: 30415326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MIDAS: A Modular DNA Assembly System for Synthetic Biology.
    van Dolleweerd CJ; Kessans SA; Van de Bittner KC; Bustamante LY; Bundela R; Scott B; Nicholson MJ; Parker EJ
    ACS Synth Biol; 2018 Apr; 7(4):1018-1029. PubMed ID: 29620866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and Efficient Modification of Golden Gate Design Standards and Parts Using Oligo Stitching.
    De Saeger J; Vermeersch M; Gaillochet C; Jacobs TB
    ACS Synth Biol; 2022 Jun; 11(6):2214-2220. PubMed ID: 35675166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoChlo: A Versatile, Modular Cloning Toolbox for Chloroplast Biotechnology.
    Occhialini A; Piatek AA; Pfotenhauer AC; Frazier TP; Stewart CN; Lenaghan SC
    Plant Physiol; 2019 Mar; 179(3):943-957. PubMed ID: 30679266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology.
    Hernanz-Koers M; Gandía M; Garrigues S; Manzanares P; Yenush L; Orzaez D; Marcos JF
    Fungal Genet Biol; 2018 Jul; 116():51-61. PubMed ID: 29680684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile plasmid system for reconstitution and analysis of mammalian ubiquitination cascades in yeast.
    Avagliano Trezza R; van den Burg J; van den Oever N; Distel B
    Microb Cell; 2017 Dec; 5(3):150-157. PubMed ID: 29487861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics.
    Akimov V; Rigbolt KT; Nielsen MM; Blagoev B
    Mol Biosyst; 2011 Dec; 7(12):3223-33. PubMed ID: 21956701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plant-specific in vitro ubiquitination analysis system.
    Zhao Q; Tian M; Li Q; Cui F; Liu L; Yin B; Xie Q
    Plant J; 2013 May; 74(3):524-33. PubMed ID: 23350615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation.
    Streich FC; Lima CD
    Methods Mol Biol; 2018; 1844():169-196. PubMed ID: 30242710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems.
    Zhang HY; Wang XH; Dong L; Wang ZP; Liu B; Lv J; Xing HL; Han CY; Wang XC; Chen QJ
    Sci Rep; 2017 Feb; 7():41993. PubMed ID: 28155921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system.
    Gantner J; Ordon J; Ilse T; Kretschmer C; Gruetzner R; Löfke C; Dagdas Y; Bürstenbinder K; Marillonnet S; Stuttmann J
    PLoS One; 2018; 13(5):e0197185. PubMed ID: 29847550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of ubiquitination activity and identification of ubiquitinated substrates using TR-TUBE.
    Yoshida Y; Saeki Y; Tsuchiya H; Tanaka K
    Methods Enzymol; 2019; 618():135-147. PubMed ID: 30850049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.