BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29194908)

  • 1. Artificial β-Double Helices from Achiral γ-Peptides.
    Misra R; Dey S; Reja RM; Gopi HN
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1057-1061. PubMed ID: 29194908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-classical Helices with cis Carbon-Carbon Double Bonds in the Backbone: Structural Features of α,γ-Hybrid Peptide Foldamers.
    Ganesh Kumar M; Thombare VJ; Katariya MM; Veeresh K; Raja KM; Gopi HN
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7847-51. PubMed ID: 27271202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Chiral β-Double Helices from γ-Peptide Foldamers.
    Pahan S; Dey S; George G; Mahapatra SP; Puneeth Kumar DR; Gopi HN
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202316309. PubMed ID: 38009917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the Structural Properties of α,γ-Hybrid Peptides by α-Amino Acid Residues: Uniform 12-Helix Versus "Mixed" 12/10-Helix.
    Misra R; Raja KMP; Hofmann HJ; Gopi HN
    Chemistry; 2017 Nov; 23(65):16644-16652. PubMed ID: 28922503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Dimorphism of Achiral α,γ-Hybrid Peptide Foldamers: Coexistence of 12- and 15/17-Helices.
    Misra R; Saseendran A; George G; Veeresh K; Raja KM; Raghothama S; Hofmann HJ; Gopi HN
    Chemistry; 2017 Mar; 23(15):3764-3772. PubMed ID: 28052426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein secondary structure mimetics: crystal conformations of α/γ4-hybrid peptide12-helices with proteinogenic side chains and their analogy with α- and β-peptide helices.
    Jadhav SV; Bandyopadhyay A; Gopi HN
    Org Biomol Chem; 2013 Jan; 11(3):509-14. PubMed ID: 23212647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic characterization of 12-helical secondary structure in β-peptides containing side chain groups.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2010 Oct; 132(39):13879-85. PubMed ID: 20828159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambidextrous α,γ-Hybrid Peptide Foldamers.
    Misra R; George G; Saseendran A; Raghothama S; Gopi HN
    Chem Asian J; 2019 Dec; 14(23):4408-4414. PubMed ID: 31670907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation.
    Patgiri A; Jochim AL; Arora PS
    Acc Chem Res; 2008 Oct; 41(10):1289-300. PubMed ID: 18630933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic characterization of helical secondary structures in alpha/beta-peptides with 1:1 residue alternation.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2008 May; 130(20):6544-50. PubMed ID: 18439014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient access to enantiopure γ4-amino acids with proteinogenic side-chains and structural investigation of γ4-Asn and γ4-Ser in hybrid peptide helices.
    Jadhav SV; Misra R; Singh SK; Gopi HN
    Chemistry; 2013 Nov; 19(48):16256-62. PubMed ID: 24151124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Investigation of Hybrid Peptide Foldamers Composed of α-Dipeptide Equivalent β-Oxy-δ
    Reja RM; Kumar V; George G; Patel R; Puneeth Kumar DR; Raghothama S; Gopi HN
    Chemistry; 2020 Apr; 26(19):4304-4309. PubMed ID: 31960517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of a parallel left-handed double-helical gramicidin-A determined by 2D 1H NMR.
    Chen Y; Tucker A; Wallace BA
    J Mol Biol; 1996 Dec; 264(4):757-69. PubMed ID: 8980684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design.
    Vasudev PG; Chatterjee S; Shamala N; Balaram P
    Acc Chem Res; 2009 Oct; 42(10):1628-39. PubMed ID: 19572698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic characterization of helical secondary structures in 2:1 and 1:2 alpha/beta-peptides.
    Choi SH; Guzei IA; Spencer LC; Gellman SH
    J Am Chem Soc; 2009 Mar; 131(8):2917-24. PubMed ID: 19203269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helices with additional H-bonds: crystallographic conformations of α,γ-hybrid peptides helices composed of β-hydroxy γ-amino acids (statines).
    Malik A; Kumar MG; Bandyopadhyay A; Gopi HN
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27564972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Helical Peptide Foldamers through α,β → β,γ Double-Bond Migration.
    Veeresh K; Gopi HN
    Org Lett; 2019 Jun; 21(12):4500-4504. PubMed ID: 31184178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan rich peptides: influence of indole rings on backbone conformation.
    Mahalakshmi R; Sengupta A; Raghothama S; Shamala N; Balaram P
    Biopolymers; 2007; 88(1):36-54. PubMed ID: 17091496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of branched beta-carbon dehydro-residues on peptide conformations: syntheses, crystal structures and molecular conformations of two tetrapeptides: (a) N-(benzyloxycarbonyl)-DeltaVal-Leu-DeltaPhe-Leu-OCH3 and (b) N-(benzyloxycarbonyl)-DeltaIle-Ala-DeltaPhe-Ala-OCH3.
    Goel VK; Somvanshi RK; Dey S; Singh TP
    J Pept Res; 2005 Aug; 66(2):68-74. PubMed ID: 16000120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and Assembly of Short α, β, γ-Hybrid Peptides: Minor Variations in Sequence and Drastic Differences in Higher-Level Structures.
    Zhang Y; Zhong Y; Connor AL; Miller DP; Cao R; Shen J; Song B; Baker ES; Tang Q; Pulavarti SVSRK; Liu R; Wang Q; Lu ZL; Szyperski T; Zeng H; Li X; Smith RD; Zurek E; Zhu J; Gong B
    J Am Chem Soc; 2019 Sep; 141(36):14239-14248. PubMed ID: 31381306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.