These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29194975)

  • 1. Biofilm recruitment under nanofiltration conditions: the influence of resident biofilm structural parameters on planktonic cell invasion.
    Habimana O; Casey E
    Microb Biotechnol; 2018 Jan; 11(1):264-267. PubMed ID: 29194975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upon impact: the fate of adhering Pseudomonas fluorescens cells during nanofiltration.
    Habimana O; Semião AJ; Casey E
    Environ Sci Technol; 2014 Aug; 48(16):9641-50. PubMed ID: 25072514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial adhesion onto nanofiltration and reverse osmosis membranes: effect of permeate flux.
    Semião AJ; Habimana O; Casey E
    Water Res; 2014 Oct; 63():296-305. PubMed ID: 25016321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of silver elution from functionalised antimicrobial nanofiltration membranes.
    Choudhari S; Habimana O; Hannon J; Allen A; Cummins E; Casey E
    Biofouling; 2017 Jul; 33(6):520-529. PubMed ID: 28604168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring biofouling based on aerobic respiration in reverse osmosis system.
    Yu Y; Park KY; Jung J; Song W; Kim J; Ryu J; Lade H; Kweon J
    J Environ Sci (China); 2019 Apr; 78():247-256. PubMed ID: 30665643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-line biofilm strength detection in cross-flow membrane filtration systems.
    Suwarno SR; Huang W; Chew YMJ; Tan SHH; Trisno AE; Zhou Y
    Biofouling; 2018 Feb; 34(2):123-131. PubMed ID: 29268634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population dynamics of a dual
    Gazzola G; Habimana O; Quinn L; Casey E; Murphy CD
    Biofouling; 2019 Mar; 35(3):299-307. PubMed ID: 31025575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration.
    Botton S; Verliefde AR; Quach NT; Cornelissen ER
    Water Res; 2012 Nov; 46(18):5848-60. PubMed ID: 22960036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment.
    Ivnitsky H; Katz I; Minz D; Volvovic G; Shimoni E; Kesselman E; Semiat R; Dosoretz CG
    Water Res; 2007 Sep; 41(17):3924-35. PubMed ID: 17585989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel scenario for biofouling control of spiral wound membrane systems.
    Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC
    Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.
    Wu B; Hochstrasser F; Akhondi E; Ambauen N; Tschirren L; Burkhardt M; Fane AG; Pronk W
    Water Res; 2016 Apr; 93():133-140. PubMed ID: 26900974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
    Ronen A; Semiat R; Dosoretz CG
    Water Res; 2013 Nov; 47(17):6628-38. PubMed ID: 24079967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability.
    Farhat NM; Javier L; Van Loosdrecht MCM; Kruithof JC; Vrouwenvelder JS
    Water Res; 2019 Mar; 150():1-11. PubMed ID: 30508707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of culture medium on the development and physiology of biofilms of Pseudomonas fluorescens formed on polyurethane paint.
    Crookes-Goodson WJ; Bojanowski CL; Kay ML; Lloyd PF; Blankemeier A; Hurtubise JM; Singh KM; Barlow DE; Ladouceur HD; Matt Eby D; Johnson GR; Mirau PA; Pehrsson PE; Fraser HL; Russell JN
    Biofouling; 2013; 29(6):601-15. PubMed ID: 23697763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of permeate drag force on the development of a biofouling layer in a pressure-driven membrane separation system.
    Eshed L; Yaron S; Dosoretz CG
    Appl Environ Microbiol; 2008 Dec; 74(23):7338-47. PubMed ID: 18931284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-destructive approaches for assessing biofouling of household reverse osmosis membranes.
    Markwardt SD; Ronnie N; Camper AK
    Biofouling; 2018 Aug; 34(7):740-752. PubMed ID: 30270657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined biofouling and scaling in membrane feed channels: a new modeling approach.
    Radu AI; Bergwerff L; van Loosdrecht MC; Picioreanu C
    Biofouling; 2015; 31(1):83-100. PubMed ID: 25587632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system: Lab-scale and full-scale studies.
    Park JW; Lee YJ; Meyer AS; Douterelo I; Maeng SK
    Water Res; 2018 Nov; 144():36-45. PubMed ID: 30014977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.