These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 29195180)

  • 1. Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations.
    Meneksedag-Erol D; Tang T; Uludağ H
    Biomaterials; 2018 Feb; 156():107-120. PubMed ID: 29195180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids.
    Bansal R; Tayal S; Gupta KC; Kumar P
    Org Biomol Chem; 2015 Mar; 13(10):3128-35. PubMed ID: 25633362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration.
    Nademi Y; Tang T; Uludağ H
    Nanoscale; 2018 Sep; 10(37):17671-17682. PubMed ID: 30206609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Delicate Balance When Substituting a Small Hydrophobe onto Low Molecular Weight Polyethylenimine to Improve Its Nucleic Acid Delivery Efficiency.
    Meneksedag-Erol D; KC RB; Tang T; Uludağ H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24822-32. PubMed ID: 26493098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles.
    Nademi Y; Tang T; Uludağ H
    Nanoscale; 2020 Jan; 12(2):1032-1045. PubMed ID: 31845926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic coarse-grained modeling of complexation between small interfering RNA and polycations.
    Wei Z; Luijten E
    J Chem Phys; 2015 Dec; 143(24):243146. PubMed ID: 26723631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice.
    Huh MS; Lee SY; Park S; Lee S; Chung H; Lee S; Choi Y; Oh YK; Park JH; Jeong SY; Choi K; Kim K; Kwon IC
    J Control Release; 2010 Jun; 144(2):134-43. PubMed ID: 20184928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Comparisons of PEI/DNA and PEI/siRNA Complexes Revealed with Molecular Dynamics Simulations.
    Ziebarth JD; Kennetz DR; Walker NJ; Wang Y
    J Phys Chem B; 2017 Mar; 121(8):1941-1952. PubMed ID: 28145711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing-sequence-dependent nucleic acid complexation and gene transfer efficiency by polyethylenimine.
    Cho SK; Dang C; Wang X; Ragan R; Kwon YJ
    Biomater Sci; 2015 Jul; 3(7):1124-33. PubMed ID: 26221945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy landscape of siRNA-polycation complexation: Elucidating the effect of molecular geometry, polymer flexibility, and charge neutralization.
    Grasso G; Deriu MA; Patrulea V; Borchard G; Möller M; Danani A
    PLoS One; 2017; 12(10):e0186816. PubMed ID: 29088239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Effect of miRNA on siRNA-PEI Polyplexes.
    Meneksedag-Erol D; Tang T; Uludağ H
    J Phys Chem B; 2015 Apr; 119(17):5475-86. PubMed ID: 25844922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation.
    Sun C; Tang T; Uludag H
    Biomaterials; 2013 Apr; 34(11):2822-33. PubMed ID: 23352043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in nanoparticle-mediated siRNA delivery.
    Williford JM; Wu J; Ren Y; Archang MM; Leong KW; Mao HQ
    Annu Rev Biomed Eng; 2014 Jul; 16():347-70. PubMed ID: 24905873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of multiple cationic vectors-siRNA complexation by all-atomic molecular dynamics simulations.
    Ouyang D; Zhang H; Parekh HS; Smith SC
    J Phys Chem B; 2010 Jul; 114(28):9231-7. PubMed ID: 20583803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies and advances in nanomedicine for targeted siRNA delivery.
    Nimesh S; Gupta N; Chandra R
    Nanomedicine (Lond); 2011 Jun; 6(4):729-46. PubMed ID: 21718181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles.
    Bartlett DW; Davis ME
    Bioconjug Chem; 2007; 18(2):456-68. PubMed ID: 17326672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microparticulate poly(vinyl alcohol) hydrogel formulations for embedding and controlled release of polyethylenimine (PEI)-based nanoparticles.
    Schulze J; Hendrikx S; Schulz-Siegmund M; Aigner A
    Acta Biomater; 2016 Nov; 45():210-222. PubMed ID: 27592816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles.
    Bishop CJ; Kozielski KL; Green JJ
    J Control Release; 2015 Dec; 219():488-499. PubMed ID: 26433125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodispersed brush-like conjugated polyelectrolyte nanoparticles with efficient and visualized siRNA delivery for gene silencing.
    Jiang R; Lu X; Yang M; Deng W; Fan Q; Huang W
    Biomacromolecules; 2013 Oct; 14(10):3643-52. PubMed ID: 24040909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, dynamics, and energetics of siRNA-cationic vector complexation: a molecular dynamics study.
    Ouyang D; Zhang H; Herten DP; Parekh HS; Smith SC
    J Phys Chem B; 2010 Jul; 114(28):9220-30. PubMed ID: 20583810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.