These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 29195336)

  • 1. Control of electrical turbulence by periodic excitation of cardiac tissue.
    Buran P; Bär M; Alonso S; Niedermayer T
    Chaos; 2017 Nov; 27(11):113110. PubMed ID: 29195336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulence control with local pacing and its implication in cardiac defibrillation.
    Cao Z; Li P; Zhang H; Xie F; Hu G
    Chaos; 2007 Mar; 17(1):015107. PubMed ID: 17411264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac response to low-energy field pacing challenges the standard theory of defibrillation.
    Caldwell BJ; Trew ML; Pertsov AM
    Circ Arrhythm Electrophysiol; 2015 Jun; 8(3):685-93. PubMed ID: 25772543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation among fibrillation, defibrillation, and cardiac pacing.
    Ideker RE; Zhou X; Knisley SB
    Pacing Clin Electrophysiol; 1995 Mar; 18(3 Pt 2):512-25. PubMed ID: 7777416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization as a mechanism for low-energy anti-fibrillation pacing.
    Ji YC; Uzelac I; Otani N; Luther S; Gilmour RF; Cherry EM; Fenton FH
    Heart Rhythm; 2017 Aug; 14(8):1254-1262. PubMed ID: 28502873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy control of electrical turbulence in the heart.
    Luther S; Fenton FH; Kornreich BG; Squires A; Bittihn P; Hornung D; Zabel M; Flanders J; Gladuli A; Campoy L; Cherry EM; Luther G; Hasenfuss G; Krinsky VI; Pumir A; Gilmour RF; Bodenschatz E
    Nature; 2011 Jul; 475(7355):235-9. PubMed ID: 21753855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart defibrillation: relationship between pacing threshold and defibrillation probability.
    Antoneli PC; Goulart JT; Bonilha I; de Carvalho DD; de Oliveira PX
    Biomed Eng Online; 2019 Sep; 18(1):96. PubMed ID: 31519192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a More Efficient Implementation of Antifibrillation Pacing.
    Wilson D; Moehlis J
    PLoS One; 2016; 11(7):e0158239. PubMed ID: 27391010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The shape of high-voltage impulse and the effect of defibrillation].
    Moroz VV; Bogushevich MS; Vostrikov VA; Kozlova EK; Chernysh AM
    Anesteziol Reanimatol; 2002; (6):60-3. PubMed ID: 12611162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventricular pacing threshold after transthoracic external defibrillation with two different waveforms: an experimental study.
    Assumpção AC; de Oliveira PP; Vilarinho KA; Eghtesady P; Silveira Filho LM; Lavagnoli CF; Severino ES; Petrucci O
    Europace; 2013 Feb; 15(2):297-302. PubMed ID: 23143858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac current density distribution by electrical pulses from TASER devices.
    Stratbucker RA; Kroll MW; McDaniel W; Panescu D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6305-7. PubMed ID: 17946756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation.
    Sinha S; Pande A; Pandit R
    Phys Rev Lett; 2001 Apr; 86(16):3678-81. PubMed ID: 11328052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave trains induced by circularly polarized electric fields in cardiac tissues.
    Feng X; Gao X; Tang JM; Pan JT; Zhang H
    Sci Rep; 2015 Aug; 5():13349. PubMed ID: 26302781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensive Exercise Training Improves Cardiac Electrical Stability in Myocardial-Infarcted Rats.
    Dor-Haim H; Lotan C; Horowitz M; Swissa M
    J Am Heart Assoc; 2017 Jul; 6(7):. PubMed ID: 28733433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effectiveness of the methods of electric cardiac stimulation and low-energy cardioversion-defibrillation in the prevention and treatment of ventricular tachycardia and ventricular fibrillation].
    Pekarskiĭ VV; Gimrikh EO; Oferkin AI; Maslov MG; Vecherskiĭ IuIu; Popov SV; Pekarskaia MV; Porotov AV
    Kardiologiia; 1990 Nov; 30(11):86-90. PubMed ID: 2087041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional transvenous/subcutaneous defibrillation of ventricular fibrillation in dogs: success rates, energy requirements, currents, voltages and impedance.
    Budde T; Vukmirovic NB; Soriano-Romero JM; Abu-Ghazaleh S; Borggrefe M; Schmiel FK; Pölitz B; Arnold G; Breithardt G
    Eur Heart J; 1988 Jan; 9(1):92-101. PubMed ID: 3345775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defibrillation of the heart: insights into mechanisms from modelling studies.
    Trayanova N
    Exp Physiol; 2006 Mar; 91(2):323-37. PubMed ID: 16469820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly switching multidirectional defibrillation: reversal of ventricular fibrillation with lower energy shocks.
    Viana MA; Bassani RA; Petrucci O; Marques DA; Bassani JW
    J Thorac Cardiovasc Surg; 2014 Dec; 148(6):3213-8. PubMed ID: 25173125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-shock synchronized pacing in isolated rabbit left ventricle: evaluation of a novel defibrillation strategy.
    Tang L; Hwang GS; Song J; Chen PS; Lin SF
    J Cardiovasc Electrophysiol; 2007 Jul; 18(7):740-9. PubMed ID: 17388914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.