These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29195344)

  • 21. Practical security analysis of a continuous-variable source-independent quantum random number generator based on heterodyne detection.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Han Y; Ma Z
    Opt Express; 2023 Jul; 31(15):23813-23829. PubMed ID: 37475223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-bit quantum random number generation by measuring positions of arrival photons.
    Yan Q; Zhao B; Liao Q; Zhou N
    Rev Sci Instrum; 2014 Oct; 85(10):103116. PubMed ID: 25362380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Provably-secure quantum randomness expansion with uncharacterised homodyne detection.
    Wang C; Primaatmaja IW; Ng HJ; Haw JY; Ho R; Zhang J; Zhang G; Lim C
    Nat Commun; 2023 Jan; 14(1):316. PubMed ID: 36658115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A High-Quality Entropy Source Using van der Waals Heterojunction for True Random Number Generation.
    Abraham N; Watanabe K; Taniguchi T; Majumdar K
    ACS Nano; 2022 Apr; 16(4):5898-5908. PubMed ID: 35416026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Random-telegraph-noise-enabled true random number generator for hardware security.
    Brown J; Zhang JF; Zhou B; Mehedi M; Freitas P; Marsland J; Ji Z
    Sci Rep; 2020 Oct; 10(1):17210. PubMed ID: 33057091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chaos with Gaussian invariant distribution by quantum-noise random phase feedback.
    Guo Y; Li H; Wang Y; Meng X; Zhao T; Guo X
    Opt Express; 2023 Sep; 31(19):31522-31532. PubMed ID: 37710668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noise in homodyne and heterodyne detection.
    Yuen HP; Chan VW
    Opt Lett; 1983 Mar; 8(3):177-9. PubMed ID: 19714176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 5-bit all-optical quantum random number generator based on a time-multiplexed optical parametric oscillator.
    Li S; Zhu X; Fan J; Wen K; Hu M
    Opt Express; 2023 Nov; 31(23):38939-38948. PubMed ID: 38017984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum random number generation enhanced by weak-coherent states interference.
    Ferreira da Silva T; Xavier GB; Amaral GC; Temporão GP; von der Weid JP
    Opt Express; 2016 Aug; 24(17):19574-80. PubMed ID: 27557235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bias-free source-independent quantum random number generator.
    Zheng Z; Zhang Y; Huang M; Chen Z; Yu S; Guo H
    Opt Express; 2020 Jul; 28(15):22388-22398. PubMed ID: 32752501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation.
    Guo X; Liu N; Li X; Ou ZY
    Opt Express; 2015 Nov; 23(23):29369-83. PubMed ID: 26698421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing randomness of series generated in an optical Bell's experiment.
    Nonaka M; Agüero M; Kovalsky M; Hnilo A
    Appl Opt; 2023 Apr; 62(12):3105-3111. PubMed ID: 37133157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum randomness introduced through squeezing operations and random number generation.
    Cheng J; Liang S; Qin J; Li J; Zeng B; Shi Y; Yan Z; Jia X
    Opt Express; 2024 May; 32(10):18237-18246. PubMed ID: 38858985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous-variable random-number generation from an amplified spontaneous emission light source.
    Tomaru T
    Appl Opt; 2020 Apr; 59(10):3109-3118. PubMed ID: 32400593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Randomness Extraction from Bell Violation with Continuous Parametric Down-Conversion.
    Shen L; Lee J; Thinh LP; Bancal JD; Cerè A; Lamas-Linares A; Lita A; Gerrits T; Nam SW; Scarani V; Kurtsiefer C
    Phys Rev Lett; 2018 Oct; 121(15):150402. PubMed ID: 30362792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Symmetrization of single-sided or nonsymmetrical distributions: the way to enhance a generation rate of random bits from a physical source of randomness.
    Chizhevsky VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):050101. PubMed ID: 21230421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. True random number generation based on temporal fluctuations of abalone shell coherent random lasers.
    Hu S; Li J; Gai B; Wu J; Cai X; Tan Y; Guo J
    Opt Lett; 2024 Sep; 49(17):4771-4774. PubMed ID: 39207960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compact quantum random number generator based on superluminescent light-emitting diodes.
    Wei S; Yang J; Fan F; Huang W; Li D; Xu B
    Rev Sci Instrum; 2017 Dec; 88(12):123115. PubMed ID: 29289193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.
    Pawlowski MP; Jara A; Ogorzalek M
    Sensors (Basel); 2015 Oct; 15(10):26838-65. PubMed ID: 26506357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.
    Li D; Lu Z; Zou X; Liu Z
    Sensors (Basel); 2015 Oct; 15(10):26251-66. PubMed ID: 26501283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.