These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29195395)

  • 1. Simultaneous excitation of
    Gan Q; Shang J; Ji Y; Wu L
    Rev Sci Instrum; 2017 Nov; 88(11):115009. PubMed ID: 29195395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Publisher's Note: "Simultaneous excitation of
    Gan Q; Shang J; Ji Y; Wu L
    Rev Sci Instrum; 2017 Dec; 88(12):129902. PubMed ID: 29289187
    [No Abstract]   [Full Text] [Related]  

  • 3. Miniature atomic scalar magnetometer for space based on the rubidium isotope
    Korth H; Strohbehn K; Tejada F; Andreou AG; Kitching J; Knappe S; Lehtonen SJ; London SM; Kafel M
    J Geophys Res Space Phys; 2016 Aug; 121(8):7870-7880. PubMed ID: 27774373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Parameter Optimization of Rubidium Laser Optically Pumped Magnetometers with Geomagnetic Field Intensity.
    Xu K; Ren X; Xiang Y; Zhang M; Zhao X; Ma K; Tian Y; Wu D; Zeng Z; Wang G
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening.
    Jiménez-Martínez R; Knappe S; Kitching J
    Rev Sci Instrum; 2014 Apr; 85(4):045124. PubMed ID: 24784676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The polarization and the fundamental sensitivity of
    Liu JH; Jing DY; Wang LL; Li Y; Quan W; Fang JC; Liu WM
    Sci Rep; 2017 Jul; 7(1):6776. PubMed ID: 28755005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Pass Optically Pumped Rubidium Atomic Magnetometer with Free Induction Decay.
    Zhang L; Yang Y; Zhao N; He J; Wang J
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight demonstration of a miniature atomic scalar magnetometer based on a microfabricated rubidium vapor cell.
    Korth H; Kitching JE; Bonnell JW; Bryce BA; Clark GB; Edens WK; Gardner CB; Rachelson W; Slagle A
    Rev Sci Instrum; 2023 Mar; 94(3):035002. PubMed ID: 37012772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.
    Venkatraman V; Pétremand Y; Affolderbach C; Mileti G; de Rooij NF; Shea H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):448-56. PubMed ID: 22481778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated Vapor Cells with Reflective Sidewalls for Chip Scale Atomic Sensors.
    Han R; You Z; Zhang F; Xue H; Ruan Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-
    Chen Y; Quan W; Zou S; Lu Y; Duan L; Li Y; Zhang H; Ding M; Fang J
    Sci Rep; 2016 Nov; 6():36547. PubMed ID: 27830744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RF atomic magnetometer array with over 40 dB interference suppression using electron spin resonance.
    Cooper RJ; Prescott DW; Lee GJ; Sauer KL
    J Magn Reson; 2018 Nov; 296():36-46. PubMed ID: 30199791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable atomic magnetometer for detection of radio-frequency magnetic fields.
    Savukov IM; Seltzer SJ; Romalis MV; Sauer KL
    Phys Rev Lett; 2005 Aug; 95(6):063004. PubMed ID: 16090946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: Detection of a single cobalt microparticle with a microfabricated atomic magnetometer.
    Maser D; Pandey S; Ring H; Ledbetter MP; Knappe S; Kitching J; Budker D
    Rev Sci Instrum; 2011 Aug; 82(8):086112. PubMed ID: 21895290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Situ Measurement of Electrical-Heating-Induced Magnetic Field for an Atomic Magnetometer.
    Lu J; Wang J; Yang K; Zhao J; Quan W; Han B; Ding M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32218349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rubidium M
    Arnold D; Siegel S; Grisanti E; Wrachtrup J; Gerhardt I
    Rev Sci Instrum; 2017 Feb; 88(2):023103. PubMed ID: 28249519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple, narrow, and robust atomic frequency reference at 993 nm exploiting the rubidium (Rb) 5S
    Nieddu T; Ray T; Rajasree KS; Roy R; Chormaic SN
    Opt Express; 2019 Mar; 27(5):6528-6535. PubMed ID: 30876236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer.
    Lee HJ; Lee SJ; Shim JH; Moon HS; Kim K
    J Magn Reson; 2019 Mar; 300():149-152. PubMed ID: 30776565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Optically Pumped Magnetometer Working in the Light-Shift Dispersed Mz Mode.
    Schultze V; Schillig B; IJsselsteijn R; Scholtes T; Woetzel S; Stolz R
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ determination of spin polarization in a single-beam fiber-coupled spin-exchange-relaxation-free atomic magnetometer with differential detection.
    Ma Y; Qiao Z; Chen Y; Luo G; Yu M; Wang Y; Lu D; Zhao L; Yang P; Lin Q; Jiang Z
    Opt Express; 2023 Jan; 31(3):3743-3754. PubMed ID: 36785360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.