These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29195395)

  • 41. Analysis and demonstration of the in-situ magnetometer for nuclear magnetic resonance gyroscopes.
    Qiang S; Fang J; Mingzhi Z
    J Magn Reson; 2022 Feb; 335():107128. PubMed ID: 34942575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lamplight Stabilization for GPS Rb Atomic Clocks via RF-Power Control.
    Huang M; Stapleton A; Camparo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1804-1809. PubMed ID: 30113893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of NMR signals with a radio-frequency atomic magnetometer.
    Savukov IM; Seltzer SJ; Romalis MV
    J Magn Reson; 2007 Apr; 185(2):214-20. PubMed ID: 17208476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction of far off-resonance laser frequency drifts based on the second harmonic of electro-optic modulator detection in the optically pumped magnetometer.
    Hu Y; Hu Z; Liu X; Li Y; Zhang J; Yao H; Ding M
    Appl Opt; 2017 Jul; 56(21):5927-5932. PubMed ID: 29047913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer.
    Sheng J; Wan S; Sun Y; Dou R; Guo Y; Wei K; He K; Qin J; Gao JH
    Rev Sci Instrum; 2017 Sep; 88(9):094304. PubMed ID: 28964239
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compact, high-sensitivity atomic magnetometer utilizing the light-narrowing effect and in-phase excitation.
    Guo Y; Wan S; Sun X; Qin J
    Appl Opt; 2019 Feb; 58(4):734-738. PubMed ID: 30874114
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of effects of magnetic field gradient on atomic spin polarization and relaxation in optically pumped atomic magnetometers.
    Fang X; Wei K; Zhai Y; Zhao T; Chen X; Zhou M; Liu Y; Ma D; Xiao Z
    Opt Express; 2022 Jan; 30(3):3926-3940. PubMed ID: 35209641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts.
    Wei K; Zhao T; Fang X; Zhai Y; Li H; Quan W
    Opt Express; 2019 May; 27(11):16169-16183. PubMed ID: 31163801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamical MCG mapping with an atomic vapor magnetometer.
    Weis A; Wynands R; Fenici R; Bison G
    Neurol Clin Neurophysiol; 2004 Nov; 2004():38. PubMed ID: 16012670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature.
    Lucivero VG; Anielski P; Gawlik W; Mitchell MW
    Rev Sci Instrum; 2014 Nov; 85(11):113108. PubMed ID: 25430099
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical atomic magnetometer at body temperature for magnetic particle imaging and nuclear magnetic resonance.
    Garcia NC; Yu D; Yao L; Xu S
    Opt Lett; 2010 Mar; 35(5):661-3. PubMed ID: 20195311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Fast Calibration and Compensation Method for Magnetometers in Strap-Down Spinning Projectiles.
    Long D; Zhang X; Wei X; Luo Z; Cao J
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Static weak magnetic field measurements based on low-field nuclear magnetic resonance.
    Wang X; Zhu M; Xiao K; Guo J; Wang L
    J Magn Reson; 2019 Oct; 307():106580. PubMed ID: 31454700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitive and stable vector magnetometer for operation in zero and finite fields.
    Bison G; Bondar V; Schmidt-Wellenburg P; Schnabel A; Voigt J
    Opt Express; 2018 Jun; 26(13):17350-17359. PubMed ID: 30119547
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation.
    Allred JC; Lyman RN; Kornack TW; Romalis MV
    Phys Rev Lett; 2002 Sep; 89(13):130801. PubMed ID: 12225013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Suppression of the Nonlinear Zeeman Effect and Heading Error in Earth-Field-Range Alkali-Vapor Magnetometers.
    Bao G; Wickenbrock A; Rochester S; Zhang W; Budker D
    Phys Rev Lett; 2018 Jan; 120(3):033202. PubMed ID: 29400503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.
    Fang J; Qin J
    Rev Sci Instrum; 2012 Oct; 83(10):103104. PubMed ID: 23126748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interleaved NQR detection using atomic magnetometers.
    Quiroz DR; Cooper RJ; Foley EL; Kornack TW; Lee GJ; Sauer KL
    J Magn Reson; 2022 Oct; 343():107288. PubMed ID: 36209574
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide.
    Cochrane CJ; Blacksberg J; Anders MA; Lenahan PM
    Sci Rep; 2016 Nov; 6():37077. PubMed ID: 27892524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transient evolution of optical magnetic resonance in rubidium vapor.
    Jin G; Xu Y; Wang Z
    Opt Express; 2019 Mar; 27(5):7087-7097. PubMed ID: 30876280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.