These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29195423)

  • 1. Evaluation of an experimental electrohydraulic discharge device for extracorporeal shock wave lithotripsy: Pressure field of sparker array.
    Li G; Connors BA; Schaefer RB; Gallagher JJ; Evan AP
    J Acoust Soc Am; 2017 Nov; 142(5):3147. PubMed ID: 29195423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.
    Perez C; Chen H; Matula TJ; Karzova M; Khokhlova VA
    J Acoust Soc Am; 2013 Aug; 134(2):1663-74. PubMed ID: 23927207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary Report on Stone Breakage and Lesion Size Produced by a New Extracorporeal Electrohydraulic (Sparker Array) Discharge Device.
    Connors BA; Schaefer RB; Gallagher JJ; Johnson CD; Li G; Handa RK; Evan AP
    Urology; 2018 Jun; 116():213-217. PubMed ID: 29596866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array.
    Alibakhshi MA; Kracht JM; Cleveland RO; Filoux E; Ketterling JA
    J Acoust Soc Am; 2013 May; 133(5):3176-85. PubMed ID: 23654419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental shock wave generator for lithotripsy studies.
    Coleman AJ; Saunders JE; Choi MJ
    Phys Med Biol; 1989 Nov; 34(11):1733-42. PubMed ID: 2587631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor.
    Connors BA; McAteer JA; Evan AP; Blomgren PM; Handa RK; Johnson CD; Gao S; Pishchalnikov YA; Lingeman JE
    BJU Int; 2012 Nov; 110(9):1376-85. PubMed ID: 22519983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.
    Coleman AJ; Saunders JE
    Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and testing of second generation extracorporeal shock-wave lithotriptor.
    Begun FP; Lawson RK; Cauley JE; Kearns CM; Foley D; Middelton WD
    Urology; 1990 Sep; 36(3):237-44. PubMed ID: 2203197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter.
    Coleman AJ; Saunders JE; Preston RC; Bacon DR
    Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields.
    Bailey MR; Blackstock DT; Cleveland RO; Crum LA
    J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beamwidth measurement of individual lithotripter shock waves.
    Kreider W; Bailey MR; Ketterling JA
    J Acoust Soc Am; 2009 Feb; 125(2):1240-5. PubMed ID: 19206897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of electrode shape on the performance of electrohydraulic lithotripters.
    Loske AM; Prieto FE
    J Stone Dis; 1993 Oct; 5(4):228-39. PubMed ID: 10146427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovations in shock wave lithotripsy technology: updates in experimental studies.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Nov; 172(5 Pt 1):1892-8. PubMed ID: 15540748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective randomized comparative study of the effectiveness and safety of electrohydraulic and electromagnetic extracorporeal shock wave lithotriptors.
    Sheir KZ; Madbouly K; Elsobky E
    J Urol; 2003 Aug; 170(2 Pt 1):389-92. PubMed ID: 12853782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The performance of different pressure pulse generators for extracorporeal lithotripsy: a comparison based on commercial lithotripters for kidney stones.
    Buizza A; Dell'Aquila T; Giribona P; Spagno C
    Ultrasound Med Biol; 1995; 21(2):259-72. PubMed ID: 7571134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.