These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29195459)

  • 1. Subcortical amplitude modulation encoding deficits suggest evidence of cochlear synaptopathy in normal-hearing 18-19 year olds with higher lifetime noise exposure.
    Paul BT; Waheed S; Bruce IC; Roberts LE
    J Acoust Soc Am; 2017 Nov; 142(5):EL434. PubMed ID: 29195459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology.
    Prendergast G; Guest H; Munro KJ; Kluk K; Léger A; Hall DA; Heinz MG; Plack CJ
    Hear Res; 2017 Feb; 344():68-81. PubMed ID: 27816499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.
    Guest H; Munro KJ; Prendergast G; Howe S; Plack CJ
    Hear Res; 2017 Feb; 344():265-274. PubMed ID: 27964937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure.
    Guest H; Munro KJ; Prendergast G; Millman RE; Plack CJ
    Hear Res; 2018 Jul; 364():142-151. PubMed ID: 29680183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of noise exposure on young adults with normal audiograms II: Behavioral measures.
    Prendergast G; Millman RE; Guest H; Munro KJ; Kluk K; Dewey RS; Hall DA; Heinz MG; Plack CJ
    Hear Res; 2017 Dec; 356():74-86. PubMed ID: 29126651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The derived-band envelope following response and its sensitivity to sensorineural hearing deficits.
    Keshishzadeh S; Garrett M; Vasilkov V; Verhulst S
    Hear Res; 2020 Jul; 392():107979. PubMed ID: 32447097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.
    Parthasarathy A; Kujawa SG
    J Neurosci; 2018 Aug; 38(32):7108-7119. PubMed ID: 29976623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas.
    Zhong Z; Henry KS; Heinz MG
    Hear Res; 2014 Mar; 309():55-62. PubMed ID: 24315815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.
    Yeend I; Beach EF; Sharma M; Dillon H
    Hear Res; 2017 Sep; 353():224-236. PubMed ID: 28780178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits.
    Johannesen PT; Buzo BC; Lopez-Poveda EA
    Hear Res; 2019 Mar; 374():35-48. PubMed ID: 30710791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
    Valero MD; Burton JA; Hauser SN; Hackett TA; Ramachandran R; Liberman MC
    Hear Res; 2017 Sep; 353():213-223. PubMed ID: 28712672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Envelope following responses predict speech-in-noise performance in normal-hearing listeners.
    Mepani AM; Verhulst S; Hancock KE; Garrett M; Vasilkov V; Bennett K; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2021 Apr; 125(4):1213-1222. PubMed ID: 33656936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of subcortical EEG metrics of synaptopathy to older listeners with impaired audiograms.
    Garrett M; Verhulst S
    Hear Res; 2019 Sep; 380():150-165. PubMed ID: 31306930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss.
    Kujawa SG; Liberman MC
    Hear Res; 2015 Dec; 330(Pt B):191-9. PubMed ID: 25769437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The possibility of cochlear synaptopathy in young people using a personal listening device.
    Bal N; Derinsu U
    Auris Nasus Larynx; 2021 Dec; 48(6):1092-1098. PubMed ID: 33824035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of dichotic listening performance in normal-hearing, noise-exposed young females.
    Bhatt IS; Wang J
    Hear Res; 2019 Sep; 380():10-21. PubMed ID: 31167151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear synaptopathy impairs suprathreshold tone-in-noise coding in the cochlear nucleus.
    Hockley A; Cassinotti LR; Selesko M; Corfas G; Shore SE
    J Physiol; 2023 Jul; 601(14):2991-3006. PubMed ID: 37212296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory evoked potentials for the assessment of noise induced hearing loss.
    Fabiani M; Mattioni A; Saponara M; Cordier A
    Scand Audiol Suppl; 1998; 48():147-53. PubMed ID: 9505307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.