These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29195502)

  • 1. OMSV enables accurate and comprehensive identification of large structural variations from nanochannel-based single-molecule optical maps.
    Li L; Leung AK; Kwok TP; Lai YYY; Pang IK; Chung GT; Mak ACY; Poon A; Chu C; Li M; Wu JJK; Lam ET; Cao H; Lin C; Sibert J; Yiu SM; Xiao M; Lo KW; Kwok PY; Chan TF; Yip KY
    Genome Biol; 2017 Dec; 18(1):230. PubMed ID: 29195502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A recurrence-based approach for validating structural variation using long-read sequencing technology.
    Zhao X; Weber AM; Mills RE
    Gigascience; 2017 Aug; 6(8):1-9. PubMed ID: 28873962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software.
    Cameron DL; Di Stefano L; Papenfuss AT
    Nat Commun; 2019 Jul; 10(1):3240. PubMed ID: 31324872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing.
    Kosugi S; Momozawa Y; Liu X; Terao C; Kubo M; Kamatani Y
    Genome Biol; 2019 Jun; 20(1):117. PubMed ID: 31159850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative analysis of structural variations using short-reads and linked-reads yields highly specific and sensitive predictions.
    Sethi R; Becker J; Graaf J; Löwer M; Suchan M; Sahin U; Weber D
    PLoS Comput Biol; 2020 Nov; 16(11):e1008397. PubMed ID: 33226985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OMMA enables population-scale analysis of complex genomic features and phylogenomic relationships from nanochannel-based optical maps.
    Leung AK; Liu MC; Li L; Lai YY; Chu C; Kwok PY; Ho PL; Yip KY; Chan TF
    Gigascience; 2019 Jul; 8(7):. PubMed ID: 31289833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OMBlast: alignment tool for optical mapping using a seed-and-extend approach.
    Leung AK; Kwok TP; Wan R; Xiao M; Kwok PY; Yip KY; Chan TF
    Bioinformatics; 2017 Feb; 33(3):311-319. PubMed ID: 28172448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. svclassify: a method to establish benchmark structural variant calls.
    Parikh H; Mohiyuddin M; Lam HY; Iyer H; Chen D; Pratt M; Bartha G; Spies N; Losert W; Zook JM; Salit M
    BMC Genomics; 2016 Jan; 17():64. PubMed ID: 26772178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next generation mapping reveals novel large genomic rearrangements in prostate cancer.
    Jaratlerdsiri W; Chan EKF; Petersen DC; Yang C; Croucher PI; Bornman MSR; Sheth P; Hayes VM
    Oncotarget; 2017 Apr; 8(14):23588-23602. PubMed ID: 28423598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. nanotatoR: a tool for enhanced annotation of genomic structural variants.
    Bhattacharya S; Barseghyan H; Délot EC; Vilain E
    BMC Genomics; 2021 Jan; 22(1):10. PubMed ID: 33407088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome maps across 26 human populations reveal population-specific patterns of structural variation.
    Levy-Sakin M; Pastor S; Mostovoy Y; Li L; Leung AKY; McCaffrey J; Young E; Lam ET; Hastie AR; Wong KHY; Chung CYL; Ma W; Sibert J; Rajagopalan R; Jin N; Chow EYC; Chu C; Poon A; Lin C; Naguib A; Wang WP; Cao H; Chan TF; Yip KY; Xiao M; Kwok PY
    Nat Commun; 2019 Mar; 10(1):1025. PubMed ID: 30833565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds.
    Liu C; Ran X; Wang J; Li S; Liu J
    PLoS One; 2018; 13(3):e0194282. PubMed ID: 29558483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genetic Algorithm for Diploid Genome Reconstruction Using Paired-End Sequencing.
    Ting CK; Lin CS; Chan MT; Chen JW; Chuang SY; Huang YT
    PLoS One; 2016; 11(11):e0166721. PubMed ID: 27861560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural variation detection using next-generation sequencing data: A comparative technical review.
    Guan P; Sung WK
    Methods; 2016 Jun; 102():36-49. PubMed ID: 26845461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural variant identification and characterization.
    Balachandran P; Beck CR
    Chromosome Res; 2020 Mar; 28(1):31-47. PubMed ID: 31907725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HySA: a Hybrid Structural variant Assembly approach using next-generation and single-molecule sequencing technologies.
    Fan X; Chaisson M; Nakhleh L; Chen K
    Genome Res; 2017 May; 27(5):793-800. PubMed ID: 28104618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants.
    Sharo AG; Hu Z; Sunyaev SR; Brenner SE
    Am J Hum Genet; 2022 Feb; 109(2):195-209. PubMed ID: 35032432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring the global structure of chromosomes from structural variations.
    Yasuda T; Miyano S
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S13. PubMed ID: 25707904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants.
    Middelkamp S; Vlaar JM; Giltay J; Korzelius J; Besselink N; Boymans S; Janssen R; de la Fonteijne L; van Binsbergen E; van Roosmalen MJ; Hochstenbach R; Giachino D; Talkowski ME; Kloosterman WP; Cuppen E
    Genome Med; 2019 Dec; 11(1):79. PubMed ID: 31801603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Structural Variations Within Five Continental Populations of
    Long E; Evans C; Chaston J; Udall JA
    G3 (Bethesda); 2018 Oct; 8(10):3247-3253. PubMed ID: 30111620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.