These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29196730)

  • 1. Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging.
    Zhang B; Yang Y
    Sci Rep; 2017 Dec; 7(1):16750. PubMed ID: 29196730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty assessment of heavy metal soil contamination mapping using spatiotemporal sequential indicator simulation with multi-temporal sampling points.
    Yang Y; Christakos G
    Environ Monit Assess; 2015 Sep; 187(9):571. PubMed ID: 26269104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space-time quantitative source apportionment of soil heavy metal concentration increments.
    Yang Y; Christakos G; Guo M; Xiao L; Huang W
    Environ Pollut; 2017 Apr; 223():560-566. PubMed ID: 28131479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of the LUR Model in the Prediction of Spatial Distributions of Soil Heavy Metals].
    Zeng JJ; Shen CZ; Zhou SL; Lu CF; Jin ZF; Zhu Y
    Huan Jing Ke Xue; 2018 Jan; 39(1):371-378. PubMed ID: 29965704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Coregionalization, spatial-correlation and spatial-factor analysis of soil available heavy metals in a typical region of the Yangtze River Delta].
    Zhong XL; Zhou SL; Zhao QG; Li JT; Liao QL
    Huan Jing Ke Xue; 2007 Dec; 28(12):2758-65. PubMed ID: 18290433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.
    Li W; Xu B; Song Q; Liu X; Xu J; Brookes PC
    Sci Total Environ; 2014 Feb; 472():407-20. PubMed ID: 24295757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. County-scale temporal-spatial distribution and variability tendency of heavy metals in arable soils influenced by policy adjustment during the last decade: a case study of Changxing, China.
    Li P; Zhi Y; Shi J; Zeng L; Wu L
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17937-47. PubMed ID: 26165991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China.
    Yang P; Mao R; Shao H; Gao Y
    C R Biol; 2009 Jun; 332(6):558-66. PubMed ID: 19520319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China.
    Zhou J; Feng K; Li Y; Zhou Y
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14957-67. PubMed ID: 27074932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of spatial interpolation of soil Cd contents in sewage irrigated area based on soil spectral information assistance].
    Chen T; Chang QR; Liu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2157-62. PubMed ID: 24159867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Using sequential indicator simulation method to define risk areas of soil heavy metals in farmland.].
    Yang H; Song YQ; Hu YM; Chen FX; Zhang R
    Ying Yong Sheng Tai Xue Bao; 2018 May; 29(5):1695-1704. PubMed ID: 29797904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].
    Liu S; Wu QY; Cao XJ; Wang JN; Zhang LL; Cai DQ; Zhou LY; Liu N
    Huan Jing Ke Xue; 2016 Jan; 37(1):270-9. PubMed ID: 27078967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils.
    Lv J; Liu Y; Zhang Z; Dai J
    J Hazard Mater; 2013 Oct; 261():387-97. PubMed ID: 23973471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas].
    Ma HH; Yu T; Yang ZF; Hou QY; Zeng QL; Wang R
    Huan Jing Ke Xue; 2018 Oct; 39(10):4684-4693. PubMed ID: 30229617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.
    Ding Q; Cheng G; Wang Y; Zhuang D
    Sci Total Environ; 2017 Feb; 578():577-585. PubMed ID: 27839763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of heavy metal sources in soil using kriging interpolation on principal components.
    Ha H; Olson JR; Bian L; Rogerson PA
    Environ Sci Technol; 2014 May; 48(9):4999-5007. PubMed ID: 24693925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.
    Qi J; Zhang H; Li X; Lu J; Zhang G
    Environ Monit Assess; 2016 Jul; 188(7):413. PubMed ID: 27315126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.