These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29196764)

  • 21. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone.
    Zhao FD; Pollintine P; Hole BD; Adams MA; Dolan P
    Bone; 2009 Feb; 44(2):372-9. PubMed ID: 19049912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning.
    Zhang M; Gong H; Zhang K; Zhang M
    Osteoporos Int; 2019 Nov; 30(11):2271-2282. PubMed ID: 31401661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of initial endplate failure in the human vertebral body.
    Fields AJ; Lee GL; Keaveny TM
    J Biomech; 2010 Dec; 43(16):3126-31. PubMed ID: 20817162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a validated glenoid trabecular density-modulus relationship.
    Knowles NK; G Langohr GD; Faieghi M; Nelson A; Ferreira LM
    J Mech Behav Biomed Mater; 2019 Feb; 90():140-145. PubMed ID: 30366304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational modeling and analysis of thoracolumbar spine fractures in frontal crash reconstruction.
    Ye X; Gaewsky JP; Jones DA; Miller LE; Stitzel JD; Weaver AA
    Traffic Inj Prev; 2018; 19(sup2):S32-S39. PubMed ID: 30010420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of vertebral endplate microstructure with bone strength in men and women.
    McKay M; Jackman TM; Hussein AI; Guermazi A; Liu J; Morgan EF
    Bone; 2020 Feb; 131():115147. PubMed ID: 31706053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Material properties of human vertebral trabecular bone under compression can be predicted based on quantitative computed tomography.
    Gehweiler D; Schultz M; Schulze M; Riesenbeck O; Wähnert D; Raschke MJ
    BMC Musculoskelet Disord; 2021 Aug; 22(1):709. PubMed ID: 34407777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical effects of bone cement volume on the endplates of augmented vertebral body: a three-dimensional finite element analysis.
    Yan L; Chang Z; Xu Z; Liu T; He B; Hao D
    Chin Med J (Engl); 2014; 127(1):79-84. PubMed ID: 24384428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of quantitative computed tomography-based measures in predicting vertebral compressive strength.
    Buckley JM; Loo K; Motherway J
    Bone; 2007 Mar; 40(3):767-74. PubMed ID: 17174619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of QCT-Derived scapula finite element models in predicting local displacements using digital volume correlation.
    Kusins J; Knowles N; Ryan M; Dall'Ara E; Ferreira L
    J Mech Behav Biomed Mater; 2019 Sep; 97():339-345. PubMed ID: 31153115
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zone-dependent changes in human vertebral trabecular bone: clinical implications.
    Thomsen JS; Ebbesen EN; Mosekilde L
    Bone; 2002 May; 30(5):664-9. PubMed ID: 11996902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis.
    Johnson JE; Troy KL
    J Biomech; 2018 Jan; 66():180-185. PubMed ID: 29137724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method.
    Mirzaei M; Zeinali A; Razmjoo A; Nazemi M
    J Biomech; 2009 Aug; 42(11):1584-91. PubMed ID: 19457486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes.
    Jones DA; Gaewsky JP; Kelley ME; Weaver AA; Miller AN; Stitzel JD
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():109-15. PubMed ID: 27586111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of thoracolumbar burst fracture may be related to the basivertebral foramen.
    Zhang X; Li S; Zhao X; Christiansen BA; Chen J; Fan S; Zhao F
    Spine J; 2018 Mar; 18(3):472-481. PubMed ID: 28823938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone.
    Yeni YN; Christopherson GT; Dong XN; Kim DG; Fyhrie DP
    J Biomech Eng; 2005 Feb; 127(1):1-8. PubMed ID: 15868782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.