These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 29196857)
1. Pulmonary subsolid nodules: value of semi-automatic measurement in diagnostic accuracy, diagnostic reproducibility and nodule classification agreement. Kim H; Park CM; Hwang EJ; Ahn SY; Goo JM Eur Radiol; 2018 May; 28(5):2124-2133. PubMed ID: 29196857 [TBL] [Abstract][Full Text] [Related]
2. Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT. Kim H; Park CM; Kim SH; Lee SM; Park SJ; Lee KH; Goo JM Eur Radiol; 2014 Nov; 24(11):2700-8. PubMed ID: 25038857 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules. Cohen JG; Kim H; Park SB; van Ginneken B; Ferretti GR; Lee CH; Goo JM; Park CM Eur Radiol; 2017 Aug; 27(8):3266-3274. PubMed ID: 28058482 [TBL] [Abstract][Full Text] [Related]
4. Improved interobserver agreement on nodule type and Lung-RADS classification of subsolid nodules using computer-aided solid component measurement. Shu J; Wen D; Xu Z; Meng X; Zhang Z; Lin S; Zheng M Eur J Radiol; 2022 Jul; 152():110339. PubMed ID: 35537358 [TBL] [Abstract][Full Text] [Related]
5. A simple prediction model using size measures for discrimination of invasive adenocarcinomas among incidental pulmonary subsolid nodules considered for resection. Kim H; Goo JM; Park CM Eur Radiol; 2019 Apr; 29(4):1674-1683. PubMed ID: 30255253 [TBL] [Abstract][Full Text] [Related]
6. Whole-Lesion Computed Tomography-Based Entropy Parameters for the Differentiation of Minimally Invasive and Invasive Adenocarcinomas Appearing as Pulmonary Subsolid Nodules. Chen X; Feng B; Chen Y; Hao Y; Duan X; Cui E; Liu Z; Zhang C; Long W J Comput Assist Tomogr; 2019; 43(5):817-824. PubMed ID: 31343995 [TBL] [Abstract][Full Text] [Related]
7. A Subsolid Nodules Imaging Reporting System (SSN-IRS) for Classifying 3 Subtypes of Pulmonary Adenocarcinoma. Cui X; Heuvelmans MA; Fan S; Han D; Zheng S; Du Y; Zhao Y; Sidorenkov G; Groen HJM; Dorrius MD; Oudkerk M; de Bock GH; Vliegenthart R; Ye Z Clin Lung Cancer; 2020 Jul; 21(4):314-325.e4. PubMed ID: 32273256 [TBL] [Abstract][Full Text] [Related]
8. Improving the prediction of lung adenocarcinoma invasive component on CT: Value of a vessel removal algorithm during software segmentation of subsolid nodules. Garzelli L; Goo JM; Ahn SY; Chae KJ; Park CM; Jung J; Hong H Eur J Radiol; 2018 Mar; 100():58-65. PubMed ID: 29496080 [TBL] [Abstract][Full Text] [Related]
9. Semi-automatic quantification of subsolid pulmonary nodules: comparison with manual measurements. Scholten ET; de Hoop B; Jacobs C; van Amelsvoort-van de Vorst S; van Klaveren RJ; Oudkerk M; Vliegenthart R; de Koning HJ; van der Aalst CM; Mali WT; Gietema HA; Prokop M; van Ginneken B; de Jong PA PLoS One; 2013; 8(11):e80249. PubMed ID: 24278264 [TBL] [Abstract][Full Text] [Related]
10. Detection of Subsolid Nodules in Lung Cancer Screening: Complementary Sensitivity of Visual Reading and Computer-Aided Diagnosis. Silva M; Schaefer-Prokop CM; Jacobs C; Capretti G; Ciompi F; van Ginneken B; Pastorino U; Sverzellati N Invest Radiol; 2018 Aug; 53(8):441-449. PubMed ID: 29543693 [TBL] [Abstract][Full Text] [Related]
11. Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better? Yoo RE; Goo JM; Hwang EJ; Yoon SH; Lee CH; Park CM; Ahn S Eur Radiol; 2017 Apr; 27(4):1369-1376. PubMed ID: 27456963 [TBL] [Abstract][Full Text] [Related]
12. Measurement Variability of Persistent Pulmonary Subsolid Nodules on Same-Day Repeat CT: What Is the Threshold to Determine True Nodule Growth during Follow-Up? Kim H; Park CM; Song YS; Sunwoo L; Choi YR; Kim JI; Kim JH; Bae JS; Lee JH; Goo JM PLoS One; 2016; 11(2):e0148853. PubMed ID: 26859665 [TBL] [Abstract][Full Text] [Related]
13. Interscan variation of semi-automated volumetry of subsolid pulmonary nodules. Scholten ET; de Jong PA; Jacobs C; van Ginneken B; van Riel S; Willemink MJ; Vliegenthart R; Oudkerk M; de Koning HJ; Horeweg N; Prokop M; Mali WP; Gietema HA Eur Radiol; 2015 Apr; 25(4):1040-7. PubMed ID: 25413965 [TBL] [Abstract][Full Text] [Related]
14. Effect of computed tomography window settings and reconstruction plane on 8th edition T-stage classification in patients with lung adenocarcinoma manifesting as a subsolid nodule. Ahn H; Lee KW; Lee KH; Kim J; Kim K; Chung JH; Lee CT Eur J Radiol; 2018 Jan; 98():130-135. PubMed ID: 29279151 [TBL] [Abstract][Full Text] [Related]
15. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Lassen BC; Jacobs C; Kuhnigk JM; van Ginneken B; van Rikxoort EM Phys Med Biol; 2015 Feb; 60(3):1307-23. PubMed ID: 25591989 [TBL] [Abstract][Full Text] [Related]
16. Diameter of the Solid Component in Subsolid Nodules on Low-Dose Unenhanced Chest Computed Tomography: Measurement Accuracy for the Prediction of Invasive Component in Lung Adenocarcinoma. Ahn H; Lee KH; Kim J; Kim J; Kim J; Lee KW Korean J Radiol; 2018; 19(3):508-515. PubMed ID: 29713229 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of T categories for pure ground-glass nodules with semi-automatic volumetry: is mass a better predictor of invasive part size than other volumetric parameters? Kim H; Goo JM; Park CM Eur Radiol; 2018 Oct; 28(10):4288-4295. PubMed ID: 29713766 [TBL] [Abstract][Full Text] [Related]
18. Influence of lung nodule margin on volume- and diameter-based reader variability in CT lung cancer screening. Han D; Heuvelmans MA; Vliegenthart R; Rook M; Dorrius MD; de Jonge GJ; Walter JE; van Ooijen PMA; de Koning HJ; Oudkerk M Br J Radiol; 2018 Oct; 91(1090):20170405. PubMed ID: 28972803 [TBL] [Abstract][Full Text] [Related]
19. Validation of prediction models for risk stratification of incidentally detected pulmonary subsolid nodules: a retrospective cohort study in a Korean tertiary medical centre. Kim H; Park CM; Jeon S; Lee JH; Ahn SY; Yoo RE; Lim HJ; Park J; Lim WH; Hwang EJ; Lee SM; Goo JM BMJ Open; 2018 May; 8(5):e019996. PubMed ID: 29794091 [TBL] [Abstract][Full Text] [Related]
20. CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists. Kim H; Lee D; Cho WS; Lee JC; Goo JM; Kim HC; Park CM Eur Radiol; 2020 Jun; 30(6):3295-3305. PubMed ID: 32055949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]