BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29196861)

  • 1. CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control.
    Lau CH; Suh Y
    Mamm Genome; 2018 Apr; 29(3-4):205-228. PubMed ID: 29196861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants.
    Wolter F; Puchta H
    Methods Mol Biol; 2018; 1830():23-40. PubMed ID: 30043362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based methods for high-throughput annotation of regulatory DNA.
    Klann TS; Black JB; Gersbach CA
    Curr Opin Biotechnol; 2018 Aug; 52():32-41. PubMed ID: 29500989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a comprehensive catalog of regulatory elements.
    Fan K; Pfister E; Weng Z
    Hum Genet; 2023 Aug; 142(8):1091-1111. PubMed ID: 36935423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of weakly conserved ancestral mammalian regulatory sequences by primate comparisons.
    Wang QF; Prabhakar S; Chanan S; Cheng JF; Rubin EM; Boffelli D
    Genome Biol; 2007; 8(1):R1. PubMed ID: 17201929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters.
    Srivastava S; Dhawan J; Mishra RK
    Mech Dev; 2015 Nov; 138 Pt 2():160-169. PubMed ID: 26254900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved and divergent gene regulatory programs of the mammalian neocortex.
    Zemke NR; Armand EJ; Wang W; Lee S; Zhou J; Li YE; Liu H; Tian W; Nery JR; Castanon RG; Bartlett A; Osteen JK; Li D; Zhuo X; Xu V; Chang L; Dong K; Indralingam HS; Rink JA; Xie Y; Miller M; Krienen FM; Zhang Q; Taskin N; Ting J; Feng G; McCarroll SA; Callaway EM; Wang T; Lein ES; Behrens MM; Ecker JR; Ren B
    Nature; 2023 Dec; 624(7991):390-402. PubMed ID: 38092918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants.
    Duan A; Wang H; Zhu Y; Wang Q; Zhang J; Hou Q; Xing Y; Shi J; Hou J; Qin Z; Chen Z; Liu Z; Yang J
    BMC Biol; 2021 Feb; 19(1):38. PubMed ID: 33627123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites.
    Aday AW; Zhu LJ; Lakshmanan A; Wang J; Lawson ND
    Dev Biol; 2011 Sep; 357(2):450-62. PubMed ID: 21435340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ functional dissection of RNA cis-regulatory elements by multiplex CRISPR-Cas9 genome engineering.
    Wu Q; Ferry QRV; Baeumler TA; Michaels YS; Vitsios DM; Habib O; Arnold R; Jiang X; Maio S; Steinkraus BR; Tapia M; Piazza P; Xu N; Holländer GA; Milne TA; Kim JS; Enright AJ; Bassett AR; Fulga TA
    Nat Commun; 2017 Dec; 8(1):2109. PubMed ID: 29235467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-coding transcription at cis-regulatory elements: computational and experimental approaches.
    Simonatto M; Barozzi I; Natoli G
    Methods; 2013 Sep; 63(1):66-75. PubMed ID: 23542771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the noncoding genome via large-scale CRISPR screens.
    Shukla A; Huangfu D
    Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites.
    Shi B; Guo X; Wu T; Sheng S; Wang J; Skogerbø G; Zhu X; Chen R
    BMC Genomics; 2009 Feb; 10():92. PubMed ID: 19243610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CLOuD9: CRISPR-Cas9-Mediated Technique for Reversible Manipulation of Chromatin Architecture.
    Seow WQ; Agarwal P; Wang KC
    Methods Mol Biol; 2022; 2532():293-309. PubMed ID: 35867255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements.
    Liu SY; Yi GQ; Tang ZL; Chen B
    Yi Chuan; 2020 May; 42(5):435-443. PubMed ID: 32431295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic annotation of disease-associated variants reveals shared functional contexts.
    Kyono Y; Kitzman JO; Parker SCJ
    Diabetologia; 2019 May; 62(5):735-743. PubMed ID: 30756131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.