BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29196893)

  • 1. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli.
    Martinez I; Gao H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):53-60. PubMed ID: 29196893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.
    Sánchez AM; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-malate production by metabolically engineered Escherichia coli.
    Zhang X; Wang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2011 Jan; 77(2):427-34. PubMed ID: 21097588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate.
    Jantama K; Haupt MJ; Svoronos SA; Zhang X; Moore JC; Shanmugam KT; Ingram LO
    Biotechnol Bioeng; 2008 Apr; 99(5):1140-53. PubMed ID: 17972330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate production from sucrose by metabolic engineered Escherichia coli strains under aerobic conditions.
    Wang J; Zhu J; Bennett GN; San KY
    Biotechnol Prog; 2011; 27(5):1242-7. PubMed ID: 21735558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase.
    Wang W; Li Z; Xie J; Ye Q
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succinate production from different carbon sources under anaerobic conditions by metabolic engineered Escherichia coli strains.
    Wang J; Zhu J; Bennett GN; San KY
    Metab Eng; 2011 May; 13(3):328-35. PubMed ID: 21440082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
    Zhang T; Ge C; Deng L; Tan T; Wang F
    FEMS Microbiol Lett; 2015 May; 362(9):. PubMed ID: 25862576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO
    Hidese R; Matsuda M; Kajikawa M; Osanai T; Kondo A; Hasunuma T
    ACS Synth Biol; 2022 Dec; 11(12):4054-4064. PubMed ID: 36445137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids.
    Cao Y; Cao Y; Lin X
    J Ind Microbiol Biotechnol; 2011 Jun; 38(6):649-56. PubMed ID: 21113642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2006 May; 8(3):209-26. PubMed ID: 16434224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of an inducible C 4 -dicarboxylic acid transport system in Bacillus subtilis.
    Ghei OK; Kay WW
    J Bacteriol; 1973 Apr; 114(1):65-79. PubMed ID: 4633350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111].
    Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2005 May; 7(3):229-39. PubMed ID: 15885621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production.
    Liu J; Li J; Liu Y; Shin HD; Ledesma-Amaro R; Du G; Chen J; Liu L
    ACS Synth Biol; 2018 Sep; 7(9):2139-2147. PubMed ID: 30092627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.