These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 29196893)

  • 1. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli.
    Martinez I; Gao H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):53-60. PubMed ID: 29196893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asuc_0142 of
    Cho YB; Park JW; Unden G; Kim OB
    Microbiology (Reading); 2023 Oct; 169(10):. PubMed ID: 37906508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Escherichia coli for high-level production of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid.
    Wu F; Wang S; Zhou D; Gao S; Song G; Liang Y; Wang Q
    Metab Eng; 2024 May; 83():52-60. PubMed ID: 38521489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila.
    Gu S; Wu T; Zhao J; Sun T; Zhao Z; Zhang L; Li J; Tian C
    Microb Biotechnol; 2024 Feb; 17(2):e14410. PubMed ID: 38298109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO
    Wu Z; Wang J; Liu J; Wang Y; Bi C; Zhang X
    Microb Cell Fact; 2019 Jan; 18(1):15. PubMed ID: 30691454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent Synthesis of Two Heterogeneous Fluxes from Glucose and Acetate for High-Yield Citramalate Production.
    Nam SH; Ye DY; Hwang HG; Jung GY
    J Agric Food Chem; 2024 Mar; 72(11):5797-5804. PubMed ID: 38465388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient production of bio-succinate in a novel metabolically engineered Klebsiella oxytoca by rational metabolic engineering and evolutionary adaptation.
    Phosriran C; Wong N; Jantama K
    Bioresour Technol; 2024 Feb; 393():130045. PubMed ID: 38006983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interchangeability of class I and II fumarases in an obligate methanotroph Methylotuvimicrobium alcaliphilum 20Z.
    Melnikov OI; Mustakhimov II; Reshetnikov AS; Molchanov MV; Machulin AV; Khmelenina VN; Rozova ON
    PLoS One; 2023; 18(10):e0289976. PubMed ID: 37883386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic reengineering of Klebsiella oxytoca KC004-TF160 for enhancing metabolic carbon flux towards succinate production pathway.
    Phosriran C; Jantama K
    Bioresour Technol; 2024 Sep; 407():131137. PubMed ID: 39043278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity in the enzymatic dehydration of malate and tartrate: Mirror image specificities of structurally similar dehydratases.
    Bellur A; Mukherjee S; Sharma P; Jayaraman V; Balaram H
    Protein Sci; 2023 Oct; 32(10):e4779. PubMed ID: 37695939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation.
    Jiang J; Luo Y; Fei P; Zhu Z; Peng J; Lu J; Zhu D; Wu H
    Bioresour Bioprocess; 2024 Apr; 11(1):34. PubMed ID: 38647614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Comamonas testosteroni for the production of 2-pyrone-4,6-dicarboxylic acid as a promising building block.
    Delmulle T; Bovijn S; Deketelaere S; Castelein M; Erauw T; D'hooghe M; Soetaert WK
    Microb Cell Fact; 2023 Sep; 22(1):188. PubMed ID: 37726725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and Application of a Multienzyme System for Synthesis of L-malate.
    Zhao J; Li X; He R; Wang Y; Wang Z
    Appl Biochem Biotechnol; 2024 Aug; ():. PubMed ID: 39088025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective visible-light driven fumarate production from gaseous CO
    Takeuchi M; Amao Y
    Dalton Trans; 2024 Jan; 53(2):418-422. PubMed ID: 38032087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers.
    Gao R; Pan H; Kai L; Han K; Lian J
    World J Microbiol Biotechnol; 2022 Apr; 38(5):89. PubMed ID: 35426614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering
    Skorokhodova AY; Gulevich AY; Debabov VG
    Biotechnol Rep (Amst); 2022 Mar; 33():e00703. PubMed ID: 35145886
    [No Abstract]   [Full Text] [Related]  

  • 17. Microbial Biosynthesis of L-Malic Acid and Related Metabolic Engineering Strategies: Advances and Prospects.
    Wei Z; Xu Y; Xu Q; Cao W; Huang H; Liu H
    Front Bioeng Biotechnol; 2021; 9():765685. PubMed ID: 34660563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex.
    Zhu F; Peña M; Bennett GN
    Metab Eng; 2021 Sep; 67():164-172. PubMed ID: 34192552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Escherichia coli for L-malate production anaerobically.
    Jiang Y; Zheng T; Ye X; Xin F; Zhang W; Dong W; Ma J; Jiang M
    Microb Cell Fact; 2020 Aug; 19(1):165. PubMed ID: 32811486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis.
    Kallscheuer N
    Front Microbiol; 2018; 9():1746. PubMed ID: 30123195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.