These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29196969)

  • 1. Rapid and reliable protein structure determination via chemical shift threading.
    Hafsa NE; Berjanskii MV; Arndt D; Wishart DS
    J Biomol NMR; 2018 Jan; 70(1):33-51. PubMed ID: 29196969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data.
    Wishart DS; Arndt D; Berjanskii M; Tang P; Zhou J; Lin G
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W496-502. PubMed ID: 18515350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust algorithm for optimizing protein structures with NMR chemical shifts.
    Berjanskii M; Arndt D; Liang Y; Wishart DS
    J Biomol NMR; 2015 Nov; 63(3):255-64. PubMed ID: 26345175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GeNMR: a web server for rapid NMR-based protein structure determination.
    Berjanskii M; Tang P; Liang J; Cruz JA; Zhou J; Zhou Y; Bassett E; MacDonell C; Lu P; Lin G; Wishart DS
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W670-7. PubMed ID: 19406927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.
    Sanz-Hernández M; De Simone A
    J Biomol NMR; 2017 Nov; 69(3):147-156. PubMed ID: 29119515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational method for NMR-constrained protein threading.
    Xu Y; Xu D; Crawford OH; Einstein JR
    J Comput Biol; 2000; 7(3-4):449-67. PubMed ID: 11108473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.
    Hafsa NE; Arndt D; Wishart DS
    Nucleic Acids Res; 2015 Jul; 43(W1):W370-7. PubMed ID: 25979265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the meaning of chemical shifts in protein NMR.
    Berjanskii MV; Wishart DS
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1564-1576. PubMed ID: 28716441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method to adjust inconsistently referenced 13C and 15N chemical shift assignments of proteins.
    Wang Y; Wishart DS
    J Biomol NMR; 2005 Feb; 31(2):143-8. PubMed ID: 15772753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EFG-CS: Predicting chemical shifts from amino acid sequences with protein structure prediction using machine learning and deep learning models.
    Gu X; Myung Y; Rodrigues CHM; Ascher DB
    Protein Sci; 2024 Aug; 33(8):e5096. PubMed ID: 38979954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CSI 2.0: a significantly improved version of the Chemical Shift Index.
    Hafsa NE; Wishart DS
    J Biomol NMR; 2014 Nov; 60(2-3):131-46. PubMed ID: 25273503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
    Fritzsching KJ; Yang Y; Schmidt-Rohr K; Hong M
    J Biomol NMR; 2013 Jun; 56(2):155-67. PubMed ID: 23625364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.
    Wang CC; Lai WC; Chuang WJ
    J Biomol NMR; 2016 Sep; 66(1):55-68. PubMed ID: 27613298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure determination of a new protein from backbone-centered NMR data and NMR-assisted structure prediction.
    Mayer KL; Qu Y; Bansal S; LeBlond PD; Jenney FE; Brereton PS; Adams MW; Xu Y; Prestegard JH
    Proteins; 2006 Nov; 65(2):480-9. PubMed ID: 16927360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein secondary structure prediction using NMR chemical shift data.
    Zhao Y; Alipanahi B; Li SC; Li M
    J Bioinform Comput Biol; 2010 Oct; 8(5):867-84. PubMed ID: 20981892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A probabilistic approach for validating protein NMR chemical shift assignments.
    Wang B; Wang Y; Wishart DS
    J Biomol NMR; 2010 Jun; 47(2):85-99. PubMed ID: 20446018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data.
    Wang L; Mettu RR; Donald BR
    J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.