BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 291973)

  • 1. Protein-heme interaction in hemoglobin: evidence from Raman difference spectroscopy.
    Shelnutt JA; Rousseau DL; Friedman JM; Simon SR
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4409-13. PubMed ID: 291973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quaternary-transformation-induced changes at the heme in deoxyhemoglobins.
    Ondrias MR; Rousseau DL; Shelnutt JA; Simon SR
    Biochemistry; 1982 Jul; 21(14):3428-37. PubMed ID: 6288075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligation and quaternary structure induced changes in the heme pocket of hemoglobin: a transient resonance Raman study.
    Friedman JM; Stepnoski RA; Stavola M; Ondrias MR; Cone RL
    Biochemistry; 1982 Apr; 21(9):2022-8. PubMed ID: 7093226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein influences on porphyrin structure in cytochrome c: evidence from Raman difference spectroscopy.
    Shelnutt JA; Rousseau DL; Dethmers JK; Margoliash E
    Biochemistry; 1981 Oct; 20(22):6485-97. PubMed ID: 6272840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes at the heme induced by freezing hemoglobin.
    Ondrias MR; Rousseau DL; Simon SR
    Science; 1981 Aug; 213(4508):657-9. PubMed ID: 7256263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy.
    Wang D; Spiro TG
    Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectra of the heme in leghemoglobin. Evidence for the absence of ruffling and the influence of the vinyl groups.
    Rousseau DL; Ondrias MR; LaMar GN; Kong SB; Smith KM
    J Biol Chem; 1983 Feb; 258(3):1740-6. PubMed ID: 6681610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein influence on the heme in cytochrome c: evidence from Raman difference spectroscopy.
    Shelnutt JA; Rousseau DL; Dethmers JK; Margoliashi E
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3865-9. PubMed ID: 226984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanical investigations of heme structure and vibrational spectra: effects of conformation, oxidation state, and electric field.
    Mitin AV; Kubicki JD
    Langmuir; 2009 Jan; 25(1):548-54. PubMed ID: 19063621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Fe(II)-N epsilon(His-F8) stretching frequencies between deoxyhemoglobins in the two alternative quaternary structures.
    Nagai K; Kitagawa T
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2033-7. PubMed ID: 6929536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling.
    Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer.
    Franzen S; Kiger L; Poyart C; Martin JL
    Biophys J; 2001 May; 80(5):2372-85. PubMed ID: 11325737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies.
    Falconi M; Desideri A; Cupane A; Leone M; Ciccotti G; Peterson ES; Friedman JM; Gambacurta A; Ascoli F
    Biophys J; 1998 Nov; 75(5):2489-503. PubMed ID: 9788944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of heme distortions and heme-protein coupling in the isolated subunits of oxygenated human hemoglobin by resonance Raman dispersion spectroscopy.
    Schweitzer-Stenner R; Dannemann U; Dreybrodt W
    Biochemistry; 1992 Jan; 31(3):694-702. PubMed ID: 1731925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-site modifications of half-ligated hemoglobin reveal autonomous dimer cooperativity within a quaternary T tetramer.
    LiCata VJ; Dalessio PM; Ackers GK
    Proteins; 1993 Nov; 17(3):279-96. PubMed ID: 8272426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A resonance Raman study of Ambystoma tigrinum hemoglobins: evidence for intraspecies hemepocket variations.
    Ondrias MR; Carson SD; Wood SC; Shelnutt JA
    Comp Biochem Physiol B; 1984; 79(4):637-42. PubMed ID: 6518767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.