These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29197302)

  • 1. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts.
    Martinez AA; Chakravarty AB; Quenneville CE
    J Mech Behav Biomed Mater; 2018 Feb; 78():315-320. PubMed ID: 29197302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Injury Tolerance of the Tibia Under Off-Axis Impact Loading.
    Chakravarty AB; Martinez AA; Quenneville CE
    Ann Biomed Eng; 2017 Jun; 45(6):1534-1542. PubMed ID: 28341914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Injury Risk Function for the Leg, Foot, and Ankle Exposed to Axial Impact Loading Using Force and Impulse.
    Bailey AM; McMurry TL; Salzar RS; Crandall JR
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30453328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival Model for Foot and Leg High Rate Axial Impact Injury Data.
    Bailey AM; McMurry TL; Poplin GS; Salzar RS; Crandall JR
    Traffic Inj Prev; 2015; 16 Suppl 2():S96-S102. PubMed ID: 26436249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.
    McKay BJ; Bir CA
    Stapp Car Crash J; 2009 Nov; 53():229-49. PubMed ID: 20058557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Anthropomorphic Test Device Lower Leg Surrogate Selection on Impact Mitigating System Evaluation in Low- and High-Rate Loading Conditions.
    Quenneville CE; Fournier E; Shewchenko N
    Mil Med; 2017 Sep; 182(9):e1981-e1986. PubMed ID: 28885966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.
    Quenneville CE; McLachlin SD; Greeley GS; Dunning CE
    J Trauma; 2011 Jan; 70(1):E13-8. PubMed ID: 21217472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an apparatus to produce fractures from short-duration high-impulse loading with an application in the lower leg.
    Quenneville CE; Fraser GS; Dunning CE
    J Biomech Eng; 2010 Jan; 132(1):014502. PubMed ID: 20524750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical impact testing of synthetic versus human cadaveric tibias for predicting injury risk during pedestrian-vehicle collisions.
    Cameron MW; Schemitsch EH; Zdero R; Quenneville CE
    Traffic Inj Prev; 2020; 21(2):163-168. PubMed ID: 32023127
    [No Abstract]   [Full Text] [Related]  

  • 10. Blast effect on the lower extremities and its mitigation: a computational study.
    Dong L; Zhu F; Jin X; Suresh M; Jiang B; Sevagan G; Cai Y; Li G; Yang KH
    J Mech Behav Biomed Mater; 2013 Dec; 28():111-24. PubMed ID: 23973770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Shoulder Injury Criterion for the EuroSID-2re Applicable in a Large Loading Condition Spectrum of the Military Domain.
    Lebarbé M; Baudrit P; Lafont D
    Stapp Car Crash J; 2019 Nov; 63():147-176. PubMed ID: 32311055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a booted finite element model of the WIAMan ATD lower limb in component and whole-body vertical loading impacts with an assessment of the boot influence model on response.
    Baker WA; Chowdhury MR; Untaroiu CD
    Traffic Inj Prev; 2018 Jul; 19(5):549-554. PubMed ID: 29381394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Military boot attenuates axial loading to the lower leg.
    Yoganandan N; Schlick M; Arun MW; Pintar FA
    Biomed Sci Instrum; 2014; 50():179-85. PubMed ID: 25405421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Axial Impact Response and Plantar Load Distribution of the Hybrid III and Military Lower Extremity Under Altered Ankle Postures.
    de Lange JE; Quenneville CE
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34259862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the biofidelity of the HIII and MIL-Lx lower leg surrogates under axial impact loading.
    Quenneville CE; Dunning CE
    Traffic Inj Prev; 2012; 13(1):81-5. PubMed ID: 22239148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary female cervical spine injury risk curves from PMHS tests.
    Yoganandan N; Chirvi S; Pintar FA; Baisden JL; Banerjee A
    J Mech Behav Biomed Mater; 2018 Jul; 83():143-147. PubMed ID: 29709826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical spine injury biomechanics: Applications for under body blast loadings in military environments.
    Yoganandan N; Stemper BD; Pintar FA; Maiman DJ; McEntire BJ; Chancey VC
    Clin Biomech (Bristol, Avon); 2013 Jul; 28(6):602-9. PubMed ID: 23796847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia from Vertical Loading.
    Pintar FA; Schlick MB; Yoganandan N; Voo L; Merkle AC; Kleinberger M
    Stapp Car Crash J; 2016 Nov; 60():247-285. PubMed ID: 27871100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of synthetic composite tibias for fracture testing using impact loads.
    Quenneville CE; Greeley GS; Dunning CE
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1195-9. PubMed ID: 21138237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of posture on forces and moments measured in a Hybrid III ATD lower leg.
    Van Tuyl J; Burkhart TA; Quenneville CE
    Traffic Inj Prev; 2016 May; 17(4):381-5. PubMed ID: 26376156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.