BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29197544)

  • 1. Control of microbial sulfide production by limiting sulfate dispersal in a water-injected oil field.
    Shen Y; Agrawal A; Suri NK; An D; Voordouw JK; Clark RG; Jack TR; Miner K; Pederzolli R; Benko A; Voordouw G
    J Biotechnol; 2018 Jan; 266():14-19. PubMed ID: 29197544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection.
    Agrawal A; Park HS; Nathoo S; Gieg LM; Jack TR; Miner K; Ertmoed R; Benko A; Voordouw G
    Environ Sci Technol; 2012 Jan; 46(2):1285-92. PubMed ID: 22148580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of nitrate on microbial processes in oil industry production waters.
    Davidova I; Hicks MS; Fedorak PM; Suflita JM
    J Ind Microbiol Biotechnol; 2001 Aug; 27(2):80-6. PubMed ID: 11641765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields.
    Agrawal A; An D; Cavallaro A; Voordouw G
    Appl Microbiol Biotechnol; 2014 Sep; 98(18):8017-29. PubMed ID: 24903813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate.
    Callbeck CM; Agrawal A; Voordouw G
    Appl Environ Microbiol; 2013 Aug; 79(16):5059-68. PubMed ID: 23770914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production-related petroleum microbiology: progress and prospects.
    Voordouw G
    Curr Opin Biotechnol; 2011 Jun; 22(3):401-5. PubMed ID: 21257304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological souring and mitigation in oil reservoirs.
    Gieg LM; Jack TR; Foght JM
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):263-82. PubMed ID: 21858492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.
    Lambo AJ; Noke K; Larter SR; Voordouw G
    Environ Sci Technol; 2008 Dec; 42(23):8941-6. PubMed ID: 19192822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production.
    Kumaraswamy R; Ebert S; Gray MR; Fedorak PM; Foght JM
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2027-38. PubMed ID: 21057944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Aug; 29(2):83-92. PubMed ID: 12161775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Nitrate and Perchlorate in Controlling Sulfidogenesis in Heavy Oil-Containing Bioreactors.
    Okpala GN; Voordouw G
    Front Microbiol; 2018; 9():2423. PubMed ID: 30356844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolites of an Oil Field Sulfide-Oxidizing, Nitrate-Reducing
    Lahme S; Enning D; Callbeck CM; Menendez Vega D; Curtis TP; Head IM; Hubert CRJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.
    da Silva ML; Soares HM; Furigo A; Schmidell W; Corseuil HX
    Appl Biochem Biotechnol; 2014 Nov; 174(5):1810-21. PubMed ID: 25149457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.
    Chen C; Shen Y; An D; Voordouw G
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Bioeng; 2001 Sep; 74(5):424-34. PubMed ID: 11427944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria.
    Okoro C; Smith S; Chiejina L; Lumactud R; An D; Park HS; Voordouw J; Lomans BP; Voordouw G
    J Ind Microbiol Biotechnol; 2014 Apr; 41(4):665-78. PubMed ID: 24477567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions.
    Dolfing J; Hubert CRJ
    Front Microbiol; 2017; 8():2575. PubMed ID: 29312252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical and biological controls of sulfide accumulation in a high temperature oil reservoir.
    Marietou A; Kjeldsen KU; Røy H
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8467-8478. PubMed ID: 32820372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.