BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29197638)

  • 1. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation.
    Malzahn A; Zhang Y; Qi Y
    Methods Mol Biol; 2019; 1917():83-93. PubMed ID: 30610630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
    Lowder LG; Paul JW; Qi Y
    Methods Mol Biol; 2017; 1629():167-184. PubMed ID: 28623586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in
    Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y
    Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators.
    Ren C; Li H; Liu Y; Li S; Liang Z
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35039855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation by CRISPR/dCas9 in common wheat.
    Zhou H; Xu L; Li F; Li Y
    Gene; 2022 Jan; 807():145919. PubMed ID: 34454034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-based tools for targeted transcriptional and epigenetic regulation in plants.
    Lee JE; Neumann M; Duro DI; Schmid M
    PLoS One; 2019; 14(9):e0222778. PubMed ID: 31557222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.
    Cress BF; Toparlak ÖD; Guleria S; Lebovich M; Stieglitz JT; Englaender JA; Jones JA; Linhardt RJ; Koffas MA
    ACS Synth Biol; 2015 Sep; 4(9):987-1000. PubMed ID: 25822415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair.
    Sano T; Ito T; Ishigami S; Bandaru S; Sano S
    J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1479-1490.e5. PubMed ID: 32682583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex and optimization of dCas9-TV-mediated gene activation in plants.
    Xiong X; Liang J; Li Z; Gong BQ; Li JF
    J Integr Plant Biol; 2021 Apr; 63(4):634-645. PubMed ID: 33058471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.