These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29197672)

  • 41. Replication fork arrest and termination of chromosome replication in Bacillus subtilis.
    Wake RG
    FEMS Microbiol Lett; 1997 Aug; 153(2):247-54. PubMed ID: 9271849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From data banks to data bases.
    Danchin A; Médigue C; Gascuel O; Soldano H; Hénaut A
    Res Microbiol; 1991; 142(7-8):913-6. PubMed ID: 1784830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-molecule visualization of fast polymerase turnover in the bacterial replisome.
    Lewis JS; Spenkelink LM; Jergic S; Wood EA; Monachino E; Horan NP; Duderstadt KE; Cox MM; Robinson A; Dixon NE; van Oijen AM
    Elife; 2017 Apr; 6():. PubMed ID: 28432790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-directed mutants of RTP of Bacillus subtilis and the mechanism of replication fork arrest.
    Duggin IG; Andersen PA; Smith MT; Wilce JA; King GF; Wake RG
    J Mol Biol; 1999 Mar; 286(5):1325-35. PubMed ID: 10064700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid turnover of DnaA at replication origin regions contributes to initiation control of DNA replication.
    Schenk K; Hervás AB; Rösch TC; Eisemann M; Schmitt BA; Dahlke S; Kleine-Borgmann L; Murray SM; Graumann PL
    PLoS Genet; 2017 Feb; 13(2):e1006561. PubMed ID: 28166228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA damage-induced replication fork regression and processing in Escherichia coli.
    Courcelle J; Donaldson JR; Chow KH; Courcelle CT
    Science; 2003 Feb; 299(5609):1064-7. PubMed ID: 12543983
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli.
    Schmidt KH; Abbott CM; Leach DR
    Mol Microbiol; 2000 Jan; 35(2):463-71. PubMed ID: 10652107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli.
    Bichara M; Meier M; Wagner J; Cordonnier A; Lambert IB
    Mutat Res; 2011; 727(3):104-22. PubMed ID: 21558018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning.
    Sharpe ME; Hauser PM; Sharpe RG; Errington J
    J Bacteriol; 1998 Feb; 180(3):547-55. PubMed ID: 9457856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inserting Extrahelical Structures into Long DNA Substrates for Single-Molecule Studies of DNA Mismatch Repair.
    Brown MW; de la Torre A; Finkelstein IJ
    Methods Enzymol; 2017; 582():221-238. PubMed ID: 28062036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A single-molecule approach to DNA replication in Escherichia coli cells demonstrated that DNA polymerase III is a major determinant of fork speed.
    Pham TM; Tan KW; Sakumura Y; Okumura K; Maki H; Akiyama MT
    Mol Microbiol; 2013 Nov; 90(3):584-96. PubMed ID: 23998701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Consequences of replication fork movement through transcription units in vivo.
    French S
    Science; 1992 Nov; 258(5086):1362-5. PubMed ID: 1455232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DNA mismatch repair-induced double-strand breaks.
    Nowosielska A; Marinus MG
    DNA Repair (Amst); 2008 Jan; 7(1):48-56. PubMed ID: 17827074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks.
    Lecointe F; Sérèna C; Velten M; Costes A; McGovern S; Meile JC; Errington J; Ehrlich SD; Noirot P; Polard P
    EMBO J; 2007 Oct; 26(19):4239-51. PubMed ID: 17853894
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics of the Interaction of RecG Protein with Stalled Replication Forks.
    Sun Z; Hashemi M; Warren G; Bianco PR; Lyubchenko YL
    Biochemistry; 2018 Apr; 57(13):1967-1976. PubMed ID: 29432678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Observing protein dynamics during DNA-lesion bypass by the replisome.
    Wilkinson EM; Spenkelink LM; van Oijen AM
    Front Mol Biosci; 2022; 9():968424. PubMed ID: 36213113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Escherichia coli DNA replication: the old model organism still holds many surprises.
    Łazowski K; Woodgate R; Fijalkowska IJ
    FEMS Microbiol Rev; 2024 Jun; 48(4):. PubMed ID: 38982189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The replicative polymerases PolC and DnaE are required for theta replication of the Bacillus subtilis plasmid pBS72.
    Titok M; Suski C; Dalmais B; Ehrlich SD; Jannière L
    Microbiology (Reading); 2006 May; 152(Pt 5):1471-1478. PubMed ID: 16622063
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Initiation of chromosome replication: structure and function of oriC and DnaA protein in eubacteria.
    Ogasawara N; Moriya S; Yoshikawa H
    Res Microbiol; 1991; 142(7-8):851-9. PubMed ID: 1784823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.