BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29197750)

  • 21. Applications of Micro-Indentation Technology to Estimate Fracture Toughness of Shale.
    Han Q; Qu Z; Wang P; Bi G; Qu G
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32971848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of vacuum-treatment on deformation properties of PMMA bone cement.
    Zivic F; Babic M; Grujovic N; Mitrovic S; Favaro G; Caunii M
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):129-38. PubMed ID: 22100087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining specimen-specific finite-element models and optimization in cortical-bone material characterization improves prediction accuracy in three-point bending tests.
    Zhang G; Xu S; Yang J; Guan F; Cao L; Mao H
    J Biomech; 2018 Jul; 76():103-111. PubMed ID: 29921522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscale mechanical and mineral heterogeneity of human cortical bone governs osteoclast activity.
    Pernelle K; Imbert L; Bosser C; Auregan JC; Cruel M; Ogier A; Jurdic P; Hoc T
    Bone; 2017 Jan; 94():42-49. PubMed ID: 27725316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machining characteristics of the haversian and plexiform components of bovine cortical bone.
    Conward M; Samuel J
    J Mech Behav Biomed Mater; 2016 Jul; 60():525-534. PubMed ID: 27041629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differences in sensitivity to microstructure between cyclic- and impact-based microindentation of human cortical bone.
    Uppuganti S; Granke M; Manhard MK; Does MD; Perrien DS; Lee DH; Nyman JS
    J Orthop Res; 2017 Jul; 35(7):1442-1452. PubMed ID: 27513922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Indentation device for in situ Raman spectroscopic and optical studies.
    Gerbig YB; Michaels CA; Forster AM; Hettenhouser JW; Byrd WE; Morris DJ; Cook RF
    Rev Sci Instrum; 2012 Dec; 83(12):125106. PubMed ID: 23278025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone.
    Uniyal P; Sharma A; Kumar N
    J Biomech; 2022 Oct; 143():111274. PubMed ID: 36049386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of microstructure on the mechanical properties of Haversian cortical bone.
    Hoc T; Henry L; Verdier M; Aubry D; Sedel L; Meunier A
    Bone; 2006 Apr; 38(4):466-74. PubMed ID: 16332459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of fracture toughness of liver tissue: experiments and validation.
    Gokgol C; Basdogan C; Canadinc D
    Med Eng Phys; 2012 Sep; 34(7):882-91. PubMed ID: 22024208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.
    Mattei G; Gruca G; Rijnveld N; Ahluwalia A
    J Mech Behav Biomed Mater; 2015 Oct; 50():150-9. PubMed ID: 26143307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation.
    Adam CJ; Swain MV
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1554-8. PubMed ID: 21783165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A contactless approach for monitoring the mechanical properties of swollen hydrogels.
    Ruland A; Chen X; Khansari A; Fay CD; Gambhir S; Yue Z; Wallace GG
    Soft Matter; 2018 Sep; 14(35):7228-7236. PubMed ID: 30132499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of gray and white matter brain tissue by indentation.
    Budday S; Nay R; de Rooij R; Steinmann P; Wyrobek T; Ovaert TC; Kuhl E
    J Mech Behav Biomed Mater; 2015 Jun; 46():318-30. PubMed ID: 25819199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.
    Yang Y; Bagnaninchi PO; Ahearne M; Wang RK; Liu KK
    J R Soc Interface; 2007 Dec; 4(17):1169-73. PubMed ID: 17472904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the Long Bone Failure Behaviors Under the Indenter Rigid-Contact by Experiment Analysis and Subject-Specific Simulation.
    Du X; Jiang B; Zhang G; Chou CC; Bai Z
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32839823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.
    Abyaneh MH; Wildman RD; Ashcroft IA; Ruiz PD
    J Mech Behav Biomed Mater; 2013 Nov; 27():239-48. PubMed ID: 23816808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of the microstructural fracture toughness of cortical bone using indentation fracture.
    Mullins LP; Bruzzi MS; McHugh PE
    J Biomech; 2007; 40(14):3285-8. PubMed ID: 17583715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-indentation on amorphous calcium phosphate splats: effect of droplet size on mechanical properties.
    Saber-Samandari S; Gross KA
    J Mech Behav Biomed Mater; 2012 Dec; 16():29-37. PubMed ID: 23137620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone.
    Schwiedrzik JJ; Zysset PK
    J Biomech; 2015 Jan; 48(2):210-6. PubMed ID: 25527891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.