These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29197772)

  • 1. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt.
    Li X; Yuan Y; Cheng D; Gao J; Kong L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2018 Feb; 250():495-504. PubMed ID: 29197772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas.
    Cheng D; Li X; Yuan Y; Yang C; Tang T; Zhao Q; Sun Y
    Sci Total Environ; 2019 Feb; 650(Pt 2):2931-2938. PubMed ID: 30373069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.
    Li D; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2015 Jun; 185():269-75. PubMed ID: 25776894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.
    Zhou L; Cheng D; Wang L; Gao J; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2017 Mar; 227():266-272. PubMed ID: 28040647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO
    Koh HG; Cho JM; Jeon S; Chang YK; Lee B; Kang NK
    Biotechnol Biofuels Bioprod; 2023 Jul; 16(1):113. PubMed ID: 37454088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic model for effects of simulated flue gas onto growth profiles of Chlorella sp. AE10 and Chlorella sp. Cv.
    Cheng D; Li X; Yuan Y; Zhao Q
    Biotechnol Appl Biochem; 2020 Sep; 67(5):783-789. PubMed ID: 31584216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulating mechanisms of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Ma X; Zhao Y
    Chemosphere; 2020 May; 247():125814. PubMed ID: 31927186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular mechanisms of Chlorella sp. responding to high CO
    Li J; Pan K; Tang X; Li Y; Zhu B; Zhao Y
    Sci Total Environ; 2021 Apr; 763():144185. PubMed ID: 33383507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.
    Sun Z; Chen YF; Du J
    Plant Biotechnol J; 2016 Feb; 14(2):557-66. PubMed ID: 25973988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Zawar P; Javalkote V; Burnap R; Mahulikar P; Puranik P
    Bioresour Technol; 2016 Dec; 221():498-509. PubMed ID: 27677152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae.
    Zhang L; Pei H; Chen S; Jiang L; Hou Q; Yang Z; Yu Z
    Bioresour Technol; 2018 Feb; 250():449-456. PubMed ID: 29197271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing growth rate and lipid yield of Chlorella with nuclear irradiation under high salt and CO2 stress.
    Cheng J; Lu H; Huang Y; Li K; Huang R; Zhou J; Cen K
    Bioresour Technol; 2016 Mar; 203():220-7. PubMed ID: 26724554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving carbohydrate and starch accumulation in
    Cheng D; Li D; Yuan Y; Zhou L; Li X; Wu T; Wang L; Zhao Q; Wei W; Sun Y
    Biotechnol Biofuels; 2017; 10():75. PubMed ID: 28344650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.
    Fan J; Ning K; Zeng X; Luo Y; Wang D; Hu J; Li J; Xu H; Huang J; Wan M; Wang W; Zhang D; Shen G; Run C; Liao J; Fang L; Huang S; Jing X; Su X; Wang A; Bai L; Hu Z; Xu J; Li Y
    Plant Physiol; 2015 Dec; 169(4):2444-61. PubMed ID: 26486592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient Chlorella sp.-Cupriavidus necator microcosm for phenol degradation and its cooperation mechanism.
    Yi T; Shan Y; Huang B; Tang T; Wei W; Quinn NWT
    Sci Total Environ; 2020 Nov; 743():140775. PubMed ID: 32663680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.
    Kuo CM; Lin TH; Yang YC; Zhang WX; Lai JT; Wu HT; Chang JS; Lin CS
    Bioresour Technol; 2017 Nov; 244(Pt 1):243-251. PubMed ID: 28780257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the acclimatization of a Chlorella sp. From freshwater to hypersalinity using photosynthetic parameters of pulse amplitude modulated fluorometry.
    Anandraj A; White S; Naidoo D; Mutanda T
    Bioresour Technol; 2020 Aug; 309():123380. PubMed ID: 32325378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.
    Wang L; Xue C; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2016 Apr; 205():264-8. PubMed ID: 26803904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid accumulation of
    Li H; Tan J; Mu Y; Gao J
    PeerJ; 2021; 9():e11525. PubMed ID: 34131525
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.