These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29197772)

  • 21. Mitigating salinity stress through interactions between microalgae and different forms (free-living & alginate gel-encapsulated) of bacteria isolated from estuarine environments.
    Wang T; Li D; Tian X; Huang G; He M; Wang C; Kumbhar AN; Woldemicael AG
    Sci Total Environ; 2024 May; 926():171909. PubMed ID: 38522526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis.
    Sun XM; Ren LJ; Bi ZQ; Ji XJ; Zhao QY; Huang H
    Bioresour Technol; 2018 Nov; 267():438-444. PubMed ID: 30032058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic pathways of Chlorella sp. cells induced by exogenous spermidine against nitric oxide damage from coal-fired flue gas.
    Wang Z; Cheng J; Zhang X; Chen L; Liu J
    Bioresour Technol; 2021 May; 328():124827. PubMed ID: 33609886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.
    Fan J; Xu H; Luo Y; Wan M; Huang J; Wang W; Li Y
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2451-62. PubMed ID: 25620370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel effective bioprocess for optimal CO
    Yu BS; Yang HE; Sirohi R; Sim SJ
    Bioresour Technol; 2022 Nov; 364():128063. PubMed ID: 36195219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria.
    Moisander PH; McClinton E; Paerl HW
    Microb Ecol; 2002 May; 43(4):432-442. PubMed ID: 12043002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.
    Wang T; Ge H; Liu T; Tian X; Wang Z; Guo M; Chu J; Zhuang Y
    J Biotechnol; 2016 Jun; 228():18-27. PubMed ID: 27085889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive transcriptomic and metabolomic insights into simultaneous CO
    Yu Q; Chen X; Ai S; Wang X; He J; Gao Z; Meng C; Xi L; Ge B; Huang F
    Environ Res; 2024 Oct; 259():119540. PubMed ID: 38960357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.
    Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selection of native freshwater microalgae and cyanobacteria for CO2 biofixation.
    Martínez L; Otero M; Morán A; García AI
    Environ Technol; 2013; 34(21-24):3137-43. PubMed ID: 24617072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient Photobioreactors/Raceway circulating system combined with alkaline-CO
    Kuo CM; Jian JF; Sun YL; Lin TH; Yang YC; Zhang WX; Chang HF; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2018 Oct; 266():398-406. PubMed ID: 29982063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon flux through photosynthesis and central carbon metabolism show distinct patterns between algae, C
    Treves H; Küken A; Arrivault S; Ishihara H; Hoppe I; Erban A; Höhne M; Moraes TA; Kopka J; Szymanski J; Nikoloski Z; Stitt M
    Nat Plants; 2022 Jan; 8(1):78-91. PubMed ID: 34949804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process.
    Kakarla R; Choi JW; Yun JH; Kim BH; Heo J; Lee S; Cho DH; Ramanan R; Kim HS
    J Microbiol; 2018 Jan; 56(1):56-64. PubMed ID: 29299841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 May; 136():496-501. PubMed ID: 23567722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO
    Sadeghizadeh A; Farhad Dad F; Moghaddasi L; Rahimi R
    Bioresour Technol; 2017 Nov; 243():441-447. PubMed ID: 28688327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-faceted effects of NaCl on salt-tolerant microalgae Golenkinia sp. SDEC-16.
    Ma M; Jiang L; He Y; Hu J; Pei H
    Bioresour Technol; 2024 Aug; 406():131016. PubMed ID: 38906195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt tolerance evolves more frequently in C4 grass lineages.
    Bromham L; Bennett TH
    J Evol Biol; 2014 Mar; 27(3):653-9. PubMed ID: 24494637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on high-CO
    Huang B; Qu G; He Y; Zhang J; Fan J; Tang T
    Front Bioeng Biotechnol; 2022; 10():1086357. PubMed ID: 36532596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism.
    Vo HNP; Ngo HH; Guo W; Liu Y; Woong Chang S; Nguyen DD; Zhang X; Liang H; Xue S
    Bioresour Technol; 2020 May; 303():122877. PubMed ID: 32028214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.