These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 29197791)
1. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Qiao JT; Li XM; Li FB J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil. Qiao JT; Li XM; Hu M; Li FB; Young LY; Sun WM; Huang W; Cui JH Environ Sci Technol; 2018 Jan; 52(1):61-70. PubMed ID: 29188998 [TBL] [Abstract][Full Text] [Related]
3. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546 [TBL] [Abstract][Full Text] [Related]
4. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472 [TBL] [Abstract][Full Text] [Related]
5. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
6. Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil. Xiao W; Ye X; Ye Z; Zhang Q; Zhao S; Chen D; Gao N; Huang M Environ Pollut; 2022 Jul; 304():119232. PubMed ID: 35364188 [TBL] [Abstract][Full Text] [Related]
7. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil. Wang X; Chen X; Yang J; Wang Z; Sun G J Environ Sci (China); 2009; 21(11):1562-8. PubMed ID: 20108691 [TBL] [Abstract][Full Text] [Related]
8. The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. Yang YP; Tang XJ; Zhang HM; Cheng WD; Duan GL; Zhu YG J Hazard Mater; 2020 Jun; 391():122200. PubMed ID: 32044634 [TBL] [Abstract][Full Text] [Related]
9. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. Chen J; Wang C; Pan Y; Farzana SS; Tam NF J Hazard Mater; 2018 Jan; 341():177-186. PubMed ID: 28777963 [TBL] [Abstract][Full Text] [Related]
10. Effects of citric acid on arsenic transformation and microbial communities in different paddy soils. Zou L; Jiang O; Zhang S; Duan G; Gustave W; An X; Tang X Environ Res; 2024 May; 249():118421. PubMed ID: 38325790 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Qiao JT; Liu TX; Wang XQ; Li FB; Lv YH; Cui JH; Zeng XD; Yuan YZ; Liu CP Chemosphere; 2018 Mar; 195():260-271. PubMed ID: 29272795 [TBL] [Abstract][Full Text] [Related]
12. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Yu Z; Qiu W; Wang F; Lei M; Wang D; Song Z Chemosphere; 2017 Feb; 168():341-349. PubMed ID: 27810533 [TBL] [Abstract][Full Text] [Related]
13. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Kong L; Gao Y; Zhou Q; Zhao X; Sun Z J Hazard Mater; 2018 Feb; 343():276-284. PubMed ID: 28988053 [TBL] [Abstract][Full Text] [Related]
14. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar. Jia R; Li L; Qu D; Mi N Environ Sci Pollut Res Int; 2018 Jan; 25(1):91-103. PubMed ID: 27858276 [TBL] [Abstract][Full Text] [Related]
15. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Huang H; Jia Y; Sun GX; Zhu YG Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880 [TBL] [Abstract][Full Text] [Related]
16. High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils. Zhang SY; Xiao X; Chen SC; Zhu YG; Sun GX; Konstantinidis KT Appl Environ Microbiol; 2021 Sep; 87(20):e0138321. PubMed ID: 34378947 [TBL] [Abstract][Full Text] [Related]
17. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. Zecchin S; Corsini A; Martin M; Cavalca L Appl Microbiol Biotechnol; 2017 Sep; 101(17):6725-6738. PubMed ID: 28660288 [TBL] [Abstract][Full Text] [Related]
18. Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: A solution for arsenic and cadmium pollution in paddy soils. Zhang T; Sun Y; Parikh SJ; Colinet G; Garland G; Huo L; Zhang N; Shan H; Zeng X; Su S J Hazard Mater; 2024 Sep; 477():135244. PubMed ID: 39032176 [TBL] [Abstract][Full Text] [Related]
19. The effects of low-dose biochar amendments on arsenic accumulation in rice (Oryza sativa L.). Lv D; Wang Z; Sun Y; Jin W; Wang Y; Zhou L; Zheng X Environ Sci Pollut Res Int; 2021 Mar; 28(11):13495-13503. PubMed ID: 33185794 [TBL] [Abstract][Full Text] [Related]
20. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells. Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]