These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29197991)

  • 1. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles.
    Korayem MH; Shahali S; Rastegar Z
    Biomech Model Mechanobiol; 2018 Jun; 17(3):745-761. PubMed ID: 29197991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of 3D nanomanipulation for rough spherical elastic and viscoelastic particles in a liquid medium; experimentally determination of cell's roughness parameters and Hamaker constant's correction.
    Korayem MH; Shahali S; Rastegar Z
    J Mech Behav Biomed Mater; 2019 Feb; 90():313-327. PubMed ID: 30396045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect.
    Korayem MH; Mahmoodi Z; Mohammadi M
    J Theor Biol; 2018 Jan; 436():105-119. PubMed ID: 28941867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing viscoelastic contact models and selecting suitable creep function for spherical biological cells.
    Korayem MH; Sooha YH; Rastgear Z
    Biomed Tech (Berl); 2019 Sep; 64(5):571-590. PubMed ID: 30913031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of work of adhesion of biological cell under AFM bead indentation.
    Zhu X; Siamantouras E; Liu KK; Liu X
    J Mech Behav Biomed Mater; 2016 Mar; 56():77-86. PubMed ID: 26688423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path planning of the viscoelastic micro biological particle to minimize path length and particle's deformation using genetic algorithm.
    Korayem MH; Shahali S; Rastegar Z; Far SK
    Phys Eng Sci Med; 2020 Sep; 43(3):903-914. PubMed ID: 32607782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells.
    Nguyen N; Shao Y; Wineman A; Fu J; Waas A
    Math Biosci; 2016 Jul; 277():77-88. PubMed ID: 27107978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axisymmetric Contact Problem for a Flattened Cell: Contributions of Substrate Effect and Cell Thickness to the Determination of Viscoelastic Properties by Using AFM Indentation.
    Zhu X; Liu L; Wang Z; Liu X
    Scanning; 2017; 2017():8519539. PubMed ID: 29422981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The head and neck cancer (HN-5) cell line properties extraction by AFM.
    Korayem MH; Heidary K; Rastegar Z
    J Biol Eng; 2020; 14():10. PubMed ID: 32206087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-cellular force microscopy in single normal and cancer cells.
    Babahosseini H; Carmichael B; Strobl JS; Mahmoodi SN; Agah M
    Biochem Biophys Res Commun; 2015 Aug; 463(4):587-92. PubMed ID: 26036579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy.
    Korayem MH; Badkoobeh Hezaveh H; Taheri M
    Microsc Microanal; 2014 Dec; 20(6):1692-707. PubMed ID: 25289582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.